簡易檢索 / 詳目顯示

研究生: 江云
Chiang, Yun
論文名稱: 熱方程的基本性質
The Study on Some Basic Properties of the Heat Equation
指導教授: 林育竹
Lin, Yu-Chu
學位類別: 碩士
Master
系所名稱: 理學院 - 數學系應用數學碩博士班
Department of Mathematics
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 54
中文關鍵詞: 熱方程基本解均值公式最大值原理反射法Dirichlet-Neumann 關係
外文關鍵詞: heat equation, fundamental solution, mean-value formula, maximum principle, reflection method, Dirichlet-Neumann relation
相關次數: 點閱:191下載:13
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 這篇論文中,我們將探討熱方程及其相關性質,內容主要取材於Evans 的
    Partial Differential Equations 一書。首先,我們會推導出熱方程並且學習如何解決初值問題及非齊次的問題。接著,我們將探討一些熱方程的基本性質,包含均值公式、最大值原理、正則性及唯一性。最後,在對全空間熱方程充分的了解下,對於半線上的問題,我們先介紹古典的方法:反射法,將問題轉換成整條實數線上的初值問題,進而解決在半線上Dirichlet邊界值問題及Neumann邊界值問題。然而,針對在半線上一般的邊界–初值問題,反射法並不適用。因此,我們介紹劉太平院士與尤釋賢教授所提出的方法。他們透過拉普拉斯轉換推導出Dirichlet邊界條件與Neumann邊界條件的關係,進而利用著個關係式及熱方程的基本解構造出解的表達式。

    In this thesis, we study the heat equation and its properties, based on Evans' ``Partial Differential Equation'. First, we derive the heat equation and learn to solve the initial-value problem and the nonhomogeneous problem. Next, we talk about some basic properties of the heat equation, including the mean-value formula, maximum principle, regularity and uniqueness. Last but not least, with full knowledge of the heat equation on the whole space, when it comes to half-line problems, we first introduce the standard reflection method, extending the problems to the whole line and solving the Dirichlet boundary value problems and Neumann boundary value problems on the half line. However, the general initial-boundary value problem cannot be solved by the reflection method. Therefore, we introduce Professor Liu, Tai-Ping and Professor Yu, Shih-Hsien's method. They derive a relation between the Dirichlet and the Neumann boundary value through Laplace transform, and furthermore, construct a solution formula using Dirichlet-Neumann relation and the fundamental solution of the heat equation.

    1 Introduction 2 1.1 Derivation 2 1.2 Preliminaries 3 2 Solution of the Heat Equation 6 2.1 Fundamental Solution 6 2.2 Initial-value Problem 11 2.3 Nonhomogeneous Problem 18 3 Basic Properties of the Heat Equation 23 3.1 Mean-value Formula 23 3.2 Maximum Principle 28 3.3 Regularity 35 3.4 Local Estimates for Solutions of the Heat Equation 38 3.5 Energy Methods 39 3.5.1 Uniqueness 39 3.5.2 Backwards Uniqueness 40 4 Solution on the Half Line 43 4.1 Reflection Method 43 4.2 Dirichlet-Neumann Relation 46 Bibliography 54

    [1] J.W. Brown and R.V. Churchill. Complex Variables and Applications. Brown-Churchill series. McGraw-Hill Higher Education, 9th edition, 2013.
    [2] Lawrence C. Evans. Partial differential equations. American Mathematical Society, Providence, R.I., 2010.
    [3] G.B. Folland. Advanced Calculus. Featured Titles for Advanced Calculus Series. Prentice Hall, 2002.
    [4] F. John. Partial Differential Equations. Applied Mathematical Sciences. Springer New York, 4th edition, 1995.
    [5] Tai-Ping Liu and Shih-Hsien Yu. On boundary relation for some dissipative systems. Bull. Inst. Math. Acad. Sin.(NS), 6(3):245–267, 2011.
    [6] Walter A. Strauss. Partial differential equations: An introduction. Wiley, 2nd edition, 2008.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE