簡易檢索 / 詳目顯示

研究生: 林泉昇
Lin, Chuan-Sheng
論文名稱: 超音速高溫衝擊流對熱防護材料燒/沖蝕之模擬分析
Thermal/Mechanical Erosion Simulation of Supersonic High-Temperature Jet Impinging on Thermal Protection Material
指導教授: 呂宗行
Leu, Tzong-Shyng
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 96
中文關鍵詞: 熱防護材料熱燒蝕機械能沖蝕
外文關鍵詞: Thermal Protection Material, thermal erosion, mechanical erosion
相關次數: 點閱:128下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用氣動力數值模擬計算固態火箭發動機噴焰熱流場之熱負荷,嘗試耦合適當的熱防護材料燒蝕邊界條件,進行所需耦合燒蝕邊界條件的外掛程式開發。初步燒蝕物理模型假設是熱防護材料因熔化相變化而燒蝕,首先當衝擊壁面上的熱邊界條件是等溫壁面 (本研究設定為銅熔點溫度1358K)下,計算火箭噴焰對於衝擊面的熱通量,假設進入壁面之熱通量部分由擋板沿厚度方向熱傳,剩餘的熱通量全部用於熔化所需要相變化潛熱下計算衝擊面的燒蝕退縮量後,利用動網格移動衝擊面進行耦合燒蝕邊界條件的模擬計算;其次為更接近真實情況,本研究考慮衝擊壁面初始溫度為常溫下,利用一維及一維/二維暫態熱傳進行壁面升溫計算,當壁面溫度達到熔點時再進行相變化燒蝕,目前已初步完成及驗證上述之耦合燒蝕邊界條件的外掛程式開發。最後在固態火箭發動機中,粒子在燃料中約佔有16%的比重,若忽略粒子效應相則會與實際有所偏差,當加入粒子時,高動能及高溫粒子會對於衝擊壁面除了熱燒蝕效應外,還有機械能沖蝕效應,因此本研究針對雙相流流場中對於衝擊壁面之燒/沖蝕進行評估分析,考慮粒子效應後研究結果發現,雙相流於衝擊擋板的熱通量明顯高於單相氣流,另外本研究使用Oka沖蝕模型計算粒子對於衝擊壁面之累加沖蝕厚度,並初步完成外掛程式開發及驗證。

    In this study, computational fluid dynamics (CFD) coupled with thermal erosion model is used to simulate the thermal erosion process of supersonic jet impinging on thermal protection material with aims to develop the suitable user defined function (UDF) for thermal boundary condition in Thermal Protection Material (TPM) ablation problem. The preliminary ablation physical model assumes that the thermal protection material is ablated by phase change latent heat due to melting processes, and the boundary condition on the impinge surface is initially assumed as the isothermal wall condition at material melting point (ex, the copper melting point temperature 1358K), and calculate the heat flux of the supersonic jet on the impinging surface. The heat flux on the surface is used to calculate the ablation thickness of the impinge surface under the latent heat phase change. In addition to isothermal wall condition, in order to get closer to the real situation. This study considers that the initial condition of the impinge surface is at room temperature, and uses the one-dimensional and one-dimensional/two-dimensional transient heat transfer to calculate the rise of the impinge surface temperature. When the impinge surface reaches the melting point, phase change ablation will be performed. Finally, the actual solid-propellant rocket alumina particles (about 16% of the plume) is considered in the present CFD model. The results show the thermal loading effects of particles on the impinge surface is very significant. If the particle effects is ignored, the wall heat flux is one order of magnitude less than the results with the particle thermal loading consideration. Therefore, high temperature particles will affect the impinge surface when the particles are taken into account. In addition to the thermal erosion effects, there are also the mechanical erosion effects on the impinging surface. Therefore, this study will also evaluate and analyze the ablation/erosion of the impinging surface in the two-phase flow.

    摘要 I Abstract III 致謝 XIII 目錄 XIV 表目錄 XVIII 圖目錄 XX 符號索引 XXVI 第一章 緒論 1 1.1 前言 1 1.2 文獻回顧 3 1.2.1 熱燒蝕模型文獻 3 1.2.2 數值熱傳模擬文獻 9 1.2.3 機械能沖蝕模型文獻 15 1.3 研究動機與目的 25 第二章 研究方法 27 2.1 單相氣體衝擊流之物理模型 27 2.1.1 單相氣體衝擊流之基本方程式 27 2.1.2 紊流模型 30 2.1.3 近壁面模型 31 2.1.4 流固耦合熱傳模型 36 2.1.5 固定壁溫之燒蝕模型 37 2.1.6 一維暫態熱傳導之燒蝕模型 38 2.1.7 一/二維暫態熱傳導之燒蝕模型 40 2.2 粒子相之物理模型 42 2.2.1 粒子力平衡方程式 42 2.2.2 粒子衝擊於壁面熱傳模型 44 2.2.3 粒子衝擊於壁面反彈模型 45 2.2.4 機械能沖蝕物理模型 47 2.3 動態網格模型 48 第三章 單相氣體衝擊流模擬結果分析 49 3.1 流場模型建立及驗證 49 3.1.1 超音速流場模型與邊界條件 49 3.1.2 網格獨立測試 52 3.2 固定壁溫邊界條件之燒蝕模擬結果 53 3.2.1 固定壁溫邊界條件熱傳模型建立 53 3.2.2 數值模擬外掛程式之驗證 54 3.2.3 模擬與實驗值之討論 57 3.3 一維暫態熱傳之燒蝕模擬結果 64 3.3.1 一維暫態熱傳模型建立 64 3.3.2 一維暫態熱傳外掛程式驗證 66 3.4 一/二維暫態熱傳之燒蝕模擬結果 73 3.5 本章小結 76 第四章 雙相衝擊流模擬結果分析 77 4.1 雙相流流場模型建立 77 4.1.1 雙相流流場模型與邊界條件 77 4.1.2 壁面反彈條件 79 4.2 兩相衝擊流場計算結果與分析 80 4.3 粒子對衝擊擋板之沖蝕 88 4.3.1 機械能沖蝕驗證結果比對 88 第五章 結論 90 5.1 熱燒蝕模型 90 5.2 機械能沖蝕模型 91 參考文獻 93

    【1】 https://commons.wikimedia.org/wiki/File:VLS_MK41_Missile_Launch.gif
    【2】 Koo, J.H., Miller, J. Weispfenning., C. Blackmon., “Silicone polymer composites for thermal protection system: fiber reinforcements and microstructures. Journal of composite materials”, pp.1363-1380, 2011.
    【3】 NAWATA, K., SASAKI, S., SAITO, T., OSHIMA, N., WAKITA, M., TOTANI, I., NAGATA, H., “Development of Wall Regression Model of Hybrid Rocket Solid Fuel.” Transactions of The Japan Society for Aeronautical and Space Sciences, Aerospace Technology Japan, pp. 67-72, 2016.
    【4】 王零森, 钨基复合材料自冷发汗机理研究. 中南矿冶学院学报, pp. 8-16, 1983.
    【5】 Koo, J.H., Lin, S., Miller, M., “Comparison of ablative materials in a simulated solid rocket exhaust environment.” in 32nd Structures, Structural Dynamics, and Materials Conference, 1991.
    【6】 Neale, A., Derome, D., Blocken, B., Carmeliet, J., “CFD calculation of convective heat transfer coefficients and validation–Part 2: Turbulent flow.”, 2006.
    【7】 Kura, T., Fornalik-Wajs, E., Wajs, J., Kenjeres, S., Turbulence models impact on the flow and thermal analyses of jet impingement. in MATEC Web of Conferences, 2018.
    【8】 陳韋丞., “超音速高溫氣體衝擊擋板之數值模擬分析”,國立成功大學航空太空工程學系碩士論文, 2019.
    【9】 Tahsini, A., Mousavi, T., “Laminar impinging jet heat transfer for curved plates.” in Proceedings of World Academy of Science, Engineering and Technology. World Academy of Science, Engineering and Technology (WASET), 2012.
    【10】 Oka, Y.I., Okamura, K., Yoshida, T., Practical estimation of erosion damage caused by solid particle impact: Part 1: Effects of impact parameters on a predictive equation. Wear, 259(1-6): pp. 95-101, 2005.
    【11】 Oka, Y.I., and Yoshida, T., Practical estimation of erosion damage caused by solid particle impact: Part 2: Mechanical properties of materials directly associated with erosion damage. Wear, 259(1-6): pp. 102-109, 2005.
    【12】 Thakre, P., Rawat, R., Clayton, R., “Mechanical erosion of graphite nozzle in solid-propellant rocket motor.” Journal of Propulsion and Power, 29(3): pp. 593-601, 2013.
    【13】 Nguyen, V., Nguyen, Q., Liu, Z., Wan, S., Lim, C., Zhang, Y., “A combined numerical–experimental study on the effect of surface evolution on the water–sand multiphase flow characteristics and the material erosion behavior.” Wear, 319(1-2): pp. 96-109, 2014.
    【14】 林章裕, 林文山, 謝啟訓, “固態燃料推進器尾焰對於銅板之沖蝕試驗及熱傳模擬” ,中華民國第27屆燃燒與能源學術研討會, 論文編號016, April 2017.
    【15】 徐文奇,“垂直發射裝置中燃氣兩相衝擊流場數值研究”, 哈爾濱工程大學航天工程系碩士論文, 2007.
    【16】 https://allaboutcfd-tomersblog.com/2020/05/04/turbulence-modeling- near-wall-treatment-in-ansys-fluent/
    【17】 Spalding, D. B., “A single formula for the law of the wall,” J. Appl. Mech., Vol 28, pp. 455-457, 1961.
    【18】 https://gradeup.co/free-and-forced-convection-i-9d6951ec-c265-11e5-9f7c-7aa8072720c6
    【19】 Bergman, T. L., Lavine A. S., Incropera, F. P., and D. P. DeWitt, “Fundamentals of Heat and Mass Transfer”, 8th Edition, Wiley Publishing Co. pp. 302-309, 2017.
    【20】 Caralaw, H. S. and Jaeger, J. C., “Conduction of heat in solids”, Oxford U. P., London, 1954.
    【21】 Akao, F., Araki, K., Mori, S., and Moriyama A., “Deformation Behaviors of a Liquid Droplet Impinging onto Hot Metal Surface.” Iron and Steel Institute of Japan, pp. 737-743, 1980.
    【22】 Wakeman, T. and Tabakoff W., “Measured particle rebound characteristics useful for erosion prediction”, American Society of Mechanical Engineers, 1982.
    【23】 Naber, J. D. and Reitz, R. D., “Modeling Engine Spray/Wall Impingement.”, Technical Report 880107, Society of Automotive Engineers, General Motors Research Laboratories, Warren, MI, 1988.
    【24】 http://jullio.pe.kr/fluent6.1/help/html/ug/node709.htm
    【25】 https://www.afs.enea.it/project/neptunius/docs/fluent/html/ug/node396.htm

    下載圖示 校內:2024-01-01公開
    校外:2024-01-01公開
    QR CODE