| 研究生: |
李旻育 Lee, Min-Yu |
|---|---|
| 論文名稱: |
半導金屬碲化物之熱電性質與電子結構 Thermoelectrics and Electronic Structure of a Semiconductive Metal Telluride |
| 指導教授: |
許桂芳
Hsu, Kuei-Fang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 44 |
| 中文關鍵詞: | 金屬碲化物 、熱電性質 、電子結構 |
| 外文關鍵詞: | metal telluride, thermoelectrics, electronic structure |
| 相關次數: | 點閱:81 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文利用固態反應法,在高溫650 ºC合成出一個具有新穎結構的金屬碲化物Ba3Ag3InTe6。其晶系及空間群為Orthorhombic Cmc21,單位晶格的a、b、c軸長分別為 a = 4.5669(3) Å, b = 27.9366(16) Å, c = 13.3819(8) Å。此化合物之結構是由AgTe4四面體以Te當作共用邊相互連結,形成皺褶層狀結構[Ag3Te4]5-。InTe4四面體以Te為共用角,懸掛在層狀結構[Ag3Te4]5-的兩側,形成鏈狀結構[InTe2]-。Ba2+為陽離子,填充在孔道中作為電荷平衡的角色。經由紫外光可見光近紅外光吸收光譜儀鑑定化合物的能隙大概落在0.48 eV。
熱電性質量測的結果顯示,此化合物是屬於P型半導體。在320400 K溫度區間席貝克係數為325‒334 μV/K。電導率和熱導率在400 K時分別為9.4 S/cm和0.35 W/mK, ZT值為0.11。
電子能帶結構計算指出此化合物是屬於直接能隙,其電洞傳遞和電子傳遞分別主要藉由AgTe4四面體所組成的層狀結構以及InTe4四面體所組成的鏈狀結構所主導。
A new metal telluride Ba3Ag3InTe6 was synthesized by solid-state reaction at 650 ºC. Crystal Data: orthorhombic, Cmc21, a = 4.5669(3) Å, b = 27.9366(16) Å, c = 13.3819(8) Å, V = 1707.3(2) Å3, and Z = 4. This compound adopts a new two-dimensional structure constructed by AgTe4 and InTe4 tetrahedra and Ba2+ cations. The edge-sharing AgTe4 tetrahedra form a puckered layer of [Ag3Te4]5‒ and the corner-sharing InTe4 tetrahedra form a zig-zag chain of [InTe2]‒ that dangles from both edges of the layer. The band gap determined by UV-vis-NIR absorption spectra is estimated to be around 0.48 eV. This compound is a p-type semiconductor with high Seebeck coefficients of 325‒334 μV/K in an entire temperature range of 320–400 K. The electrical conductivity of 9.4 S/cm and the thermal conductivity of 0.35 W/mK give a ZT value of 0.11 at 400 K. The electronic band structure reveals a direct band gap at the Γ point of face centered primitive Brillouin zone. The density of states (DOS) analysis shows that the p-type hole transport is mostly achieved through the layer consisting of AgTe4 tetrahedra.
[1] F. J. DiSalvo, Science 1999, 285, 703706
[2] T. M. Tritt, Science 1999, 283, 804.
[3] M. G. Kanatzidis, Chem. Mater. 2010, 22, 646659
[4] J. M. Tarascon, M. Armand Nature 2001, 414, 359367
[5] N. Finlayson, W. C. Banyai, C. T. Seaton, J. Opt. Soc. Am. 1989, 6B, 675684
[6] Y. Kim, I. S. Seo, S. W. Martin, J. Baek, P. S. Halasyamani, N. Arumugam, H. Steinfink, Chem. Mater. 2008, 20, 60486052
[7] S. C. Abrahams, J. L. Bernstein, J. Chem. Phy. 1974, 61, 11401146
[8] A. Stadler, Materials 2012, 5, 661683
[9] H. Lin, Y. Liu, L.-J. Zhou, H.-J. Zhao, L. Chen, Inorg. Chem. 2016, 55, 4470−4475
[10] (a) CRC Handbook of Thermoelectrics, ed. D. M. Rowe, CRC Press, Boca Raton, FL, 1995; (b) Thermoelectrics Handbook: Macro To Nano, ed. D. M. Rowe, CRC/Taylor & Francis, Boca Raton, 2006.
[11] (a) G. Tai, W. Guo and Z. Zhang, Cryst. Growth Des., 2008, 8, 2906–2911; (b) G. Tai, B. Zhou and W. Guo, J. Phys. Chem. C, 2008, 112, 11314–11318; (c) G. Tai, C. Miao, Y. Wang, Y. Bai, H. Zhang and W. Guo, Nanoscale Res. Lett.,2011, 6, 329.
[12] D.Y. Chung, K. S. Choi, L. Iordanidis, J. L. Schindler, P. W. Brazis, C. R. Kannewurf, B. Chen, S. Hu, C. Uher, M. G. Kanatzidis, Chem. Mater. 1997, 9, 3060.
[13] A. Mrotzek, D.-Y. Chung, T. Hogen, M. G. Kanatzidis, J. Mater. Chem. 2000, 10, 1667.
[14] J. Androulakis, K. F. Hsu, H. Kong, C. Uher, J. J. Angelo, A. Downey, T. Hogen, M. G. Kanatzidis, Adv. Mater. 2006, 18, 1170.
[15] S. Derakhshan, A. Assoud, N. J. Taylor, H. Kleinke, Intermetallics. 2006, 14, 198.
[16] D. Y. Chung, T. P. Hogen, M. Rocci-Lane, P. Brazis, J. R. Ireland,
C. R. Kannewurf, M. Bastea, C. Uher, M. G. Kanatzidis, J. Am. Chem. Soc. 2004, 126, 6414.
[17] D. M. Rowe, CRC Handbook of Thermoelectric. CRC Press. 1995.
[18] J. P. Heremans, V. Jovovic, E. S. Toberer, A. Saramat, K. Kurosaki, A. Charoenphakdee, S. Yamanaka, G. J. Snyder, Science. 2008, 321, 554.
[19] K. Biswas, J. He, Q. Zhang, G. Wang, C. Uher, V. P. Dravid, M. G. Kanatzidis, Nat. Chem. 2011, 3, 160.
[20] B. Poudel, Q. Hao, Y. Ma, Y. Lan, A. Minnich, B. Yu, X. Yan, D. Wang, A. Muto, D. Vashaee, X. Chen, J. Liu, M. S. Dresselhaus, G. Chen, Z. Ren, Science. 2008, 320, 634.
[21] K. Biswas, J. He, I. D. Blum, C. I. Wu, T. P. Hogan, D. N. Seidman, V. P. Dravid, M. G. Kanatzidis, Nature. 2012, 489, 414.
[22] A. Adam, Mater. Res. Bull. 2007, 42, 1986.
[23] D. Y. Chung, S. Loo, C. Uher, W. Chen, J. S. Dyck, M. G. Kanatzidis, Chem. Mater. 2012, 24, 1854.
[24] K. Sridhar, K. Chattopadhyay, J. Alloys Compd. 1998, 264, 193-298.
[25] M. Fujikane, K. Kurosaki, H. Muta, S. Yamanaka, J. Alloys Compd. 2005, 393, 299-301.
[26] H. Liu, X. Shi, F. Xu, L. Zhang, W. Zhang, L. Chen, L. Qiang, C. Uher, T. Day, G. J. Snyder, Nat. Mater. 2012, 11, 422.
[27] Y. C. Wang, DiSalvo, and F. J. J. Solid State Chem. 2001, 156, 4450.
[28] R. Patschke, X. Zhang, D. Singh, J. Schindler, C. R. Kannewurf, N. Lowhorn, T. Tritt, G.S. Nolas, M. G. Kanatzidis, Chem. Mater. 2001, 13, 613621.
[29] A. Assoud, S. Thomas, B. Sutherland, H. Zhang, T. M. Tritt, H. Kleinke, Chem. Mater. 2006, 18, 3866.
[30] Y. Cui, A. Assoud, J. Xu, H. Kleinke, Inorg. Chem. 2007, 46, 12151221.
[31] O. Mayasree, Y. J. Cui, A. Assoud, H. Kleinke, Inorg. Chem. 2010, 49, 65186524.
[32] B. A. Kuropatwa, A. Assoud, H. Kleinke, Inorg. Chem. 2012, 51, 52995304.
[33] M. Fujikane, K. Kurosaki, H. Muta, S. Yamanaka, J. Alloys Compd. 393 (2005) 299301.
[34] M. Fujikane, K. Kurosaki, H. Muta, S. Yamanaka, J. Alloys Compd. 396 (2005) 280–282.
[35] H. Matsushita, E. Hagiwara, A. Katsui, J. Mater. Sci. 39 (2004) 6299–6301.
[36] D. P. Young, C.L. Brown, P. Khalifah, R. J. Cava, A. P. Ramirez, J. Appl. Phys. 88 (2000) 5221–5224.
[37] A. Assoud, Y. Cui, S. Thomas, B. Sutherland, H. Kleinke, Journal of Solid State Chemistry 181 (2008) 2024–200
[38] G. M. Sheldrick, Acta Cryst. 2015. C71, 38.
[39] W.-H. Lai, A. S. Haynes, L. Frazer, Y.-M. Chang, T.-K. Liu, J.-F. Lin, I. C. Liang, H.-S. Sheu, J. B. Ketterson, M. G. Kanatzidis and K.-F. Hsu, Chem. Mater, 2015, 27, 1316–1326.
[40] R. Dovesi, R. Orlando, B. Civalleri, C. Roetti, V. R. Saunders and C. M. Zicovich-Wilson, Z. Kristallogr., 2005, 220, 571–573.
[41] D. I. Bilc, R. Orlando, R. Shaltaf, G. M. Rignanese, J. Iniguez and Ph. Ghosez, Phys. Rev. B: Condens. Matter, 2008, 77, 165107.
[42] Z. Wu and R. E. Cohen, Phys. Rev. B: Condens. Matter, 2006, 73, 235116.
[43] A. D. Becke, J. Chem. Phys., 1996, 104, 1040–1046.
[44] S. Piskunov, E. Heifets, R. I. Eglitis and G. Borstel, Comput. Mater. Sci., 2004, 29, 165–178.
[45] R. Dovesi, V. R. Saunders, C. Roetti, R. Orlando, C. M. Zicovich-Wilson, F. Pascale, B. Civalleri, K. Doll, N. M. Harrison, I. J. Bush, P. D’Arco, M. Llunell, M. Causà and Y. Noël, CRYSTAL14 User’s Manual, University of Torino,2014. (http://www.crystal.unito.it/Basis_Sets/silver.html).
[46] B. Metz, H. Stoll and M. Dolg, J. Chem. Phys., 2000, 113, 2563–2569.
[47] K. A. Peterson, J. Chem. Phys., 2003, 119, 11099–11112.
[48] K. A. Peterson, D. Figgen, E. Goll, H. Stoll and M. Dolg, J.Chem. Phys., 2003, 119, 11113–11123.
[49] Z. Wu and R. E. Cohen, Phys. Rev. B: Condens. Matter, 2006, 73, 235116.
[50] S. Paria, T. Ohta, Y. Morimoto, T. Ogura, H. Sugimoto, N. Fujieda, K Goto, K. Asano, T. Suzuki, S. Itoh, J. Am. Chem. Soc. 2015, 137, 10870−10873.
[51] (a) X. Zhang, J. Li, B. Foran, S. Lee, H.-Y. Guo, T. Hogan, C. R. Kannewurf and M. G. Kanatzidis, J. Am. Chem. Soc., 1995, 117, 10513–10520; (b) O. Gourdon, J. Hanko, F. Boucher, V. Petricek, M.-H. Whangbo, M. G. Kanatzidis and M. Evain, Inorg. Chem., 2000, 39, 1398–1409.
[52] J. Li, H.-Y. Guo and R. A. Yglesias, Chem. Mater., 1995, 7,599–601.
[53] K. O. Klepp and W. Sparlinek, Z. Kristallogr., 1996, 211, 393–394.
[54] A. Assoud, S. Derakhshan, N. Soheilnia, H. Kleinke, Chem. Mater. 2004, 16, 4193-4198.
[55] K. Volk, G. Cordier, R. Cook, H. Scha¨fer, Z. Naturforsch. B 1980, 35, 136-140.
[56] A. Assoud, N. Soheilnia, H. Kleinke, Chem. Mater. 2004, 16, 2215-2221.
[57] A. Assoud, N. Soheilnia, H. Kleinke, J. Solid State Chem. 2005, 178, 1087-1093.
[58] J. O. Sofo, G. D. Mahan, Phys. Rev. B 1994, 49, 45654570.
[59] A. Assoud, N. Soheilnia, H. Kleinke, Chem. Mater. 2004, 16, 2215-2221.
[60] A. Assoud, N. Soheilnia, H. Kleinke, J. Solid State Chem. 2005, 178, 1087-1093.
[61] A. Assoud, S. Derakhshan, N. Soheilnia, H. Kleinke, Chem. Mater. 2004, 16, 4193-4198.
[62] J. O. Sofo and G. D. Mahan, Phys. Rev. B, 1994, 49, 4565−4570.
[63] D. I. Bilc, T. Kyratsi, D. Y. Chung, P. Larson, S. D. Mahanti and M. G. Kanatzidis, Phys. Rev. B: Condens. Matter, 2005, 71, 085116.
[64] D. I. Bilc, G. Hautier, D. Waroquiers, G.-M. Rignanese and Ph. Ghosez, Phys. Rev. Lett., 2015, 114, 136601.
[65] D. I. Bilc, C. G. Floare, L. P. Zârbo, S. Garabagiu, S. Lemal and Ph. Ghosez, J. Phys. Chem. C, 2016, 120, 25678.
[66] C. Kittel, Introduction to Solid State Physics, John Wiley & Sons, New York, 8th edn, 2004.