簡易檢索 / 詳目顯示

研究生: 黃心盼
Huang, Hsin-Pan
論文名稱: 數值研究 STO/LAO 異質界面上二維電子氣的形成和控制
Formation and Control of Two-Dimension Electron Gas at the STO/LAO Interface: A Numerical Study
指導教授: 盧炎田
Lu, Yan-Ten
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 58
中文關鍵詞: STO/LAO二維電子氣界面不平整
外文關鍵詞: STO/LAO, 2DEG, interface, roughness
相關次數: 點閱:85下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 最近的實驗觀察到在STO/LAO界面上出現二維電子氣 (2DEG) 的情形,此項發現已經吸引了許多實驗和理論上的關注。在這一篇論文中,我們首先以數值方法探討在此界面的二維電子氣形成的機制。部分的電子是來自於LAO上的缺陷,因為界面 (interface) 位能差異而轉移到STO,在LAO/STO界面上形成二維電子氣。更近的一篇報導指出:若在STO/LAO外加上一層PZT,則二維電子氣的濃度可以因PZT的極化方向而增加或減少。為了解釋這個實驗所觀察到的現象,我們建構了一個模型:A .因為LAO/PZT界面的不平整 (roughness),引起迷走電場 (stray field) 延伸到STO/LAO界面;B.迷走電場改變STO的雜質所看到的電場而產生極化場,使得部分STO的位能高於費米能帶 (Fermi energy),這一部分改變了二維電子氣的密度大小。

    Recent reports about the existence of two-dimension electron gas (2DEG) at the interface between STO/LAO had attracted many experimental and theoretic interests. In this thesis, we first numerically demonstrated the formation of 2DEG. A charge transfer from the impurities in LAO to STO builds the fundamental electric field at the interface for the setup of 2DEG. A most recent report showed that the concentration of 2DEG in STO/LAO/PZT hetero-structure could be enhanced or suppressed by the direction of polarization in PZT cap layer. To explain this experimental observation, we first built a model for obtaining leaking field from the PZT bound charge due to interface roughness. Then, the leaking field changed the resultant potential profile near the interface, and polarized the impurities in the STO layer. The non-uniform polarization yields an extra bound charge distribution, which produces a bump potential profile in STO layer and therefore changes the concentration of 2DEG.

    1 Introduction 8 1.1 Briefs of the Experimental Observations 9 1.1.1 Experimental setup 9 1.1.2 Summary of Experimental Observations 11 1.2 Theoretical Model and Numerical Simulation 14 1.3 Overview of Thesis 15 2 Theoretic Model 16 2.1 Heterostructure 17 2.2 Formation of Confine Potential 21 2.3 PZT Polarization 22 2.3.1 Model of Rough interface LAO/PZT 22 2.3.2 Calculation of One Hemi-ellipsoid Roughness Model 27 2.4 Effect of Confine Potential on Impurities in STO 29 3 Numerical Algorithm 31 3.1 Govering Equation 31 3.1.1 Units and Scaling 32 3.2 Self-consistent scheme 35 3.2.1 Self-consistent process 35 3.2.2 Finding Fermi Level 37 4 Results 39 4.1 Formation of Confine Potential 39 4.1.1 Change the LAO thickness 40 4.1.2 Change impurity density 42 4.2 PZT Polarization 43 4.2.1 Potential Calculation Result 43 4.2.2 Add the Result onto the Original Energy Structure 45 4.3 Add impurity in STO and Consider the Polarization field in STO 47 4.3.1 Effects of Polarization: Magnitude and Direction 49 5 Conclusion and Perspective 52 Appendix A Unit Matching 55 Bibliography 57

    [1] Kroemer H. Quasi-electric fields and band offsets:teaching electrons new tricks. No- bel Lecture, 8 December 2000 (http://go.nature.com/5SFA6C).
    [2] Vu Thanh Tra et al. Ferroelectric Control of the Conduction at the LaAlO3/SrTiO3 Heterointerface. Advanced Materials, 25, 3357-3364 (2013)
    [3] Hwang, H. Y. et al. Emergent phenomena at oxide interfaces. Nature Material. 11, 103-113 (2012)
    [4] Tokura, Y. and Hwang, H. Y. Complex oxides on fire. Nature Mater. 7, 694-695 (2008)
    [5] A. Ontomo et al. A high-mobility electron gas at the LaAlO3/SrTiO3 heterointerface.
    Nature. 427, 423-426 (2004)
    [6] N. Reyren et al. Superconducting Interfaces Between Insulating Oxides. Science 317, 1196-1199 (2007)
    [7] Darrell G. Schlom and Jochen Mannhart. Oxide electronics : Interface takes charge over Si. Nature Materials. 10, 168-169(2011)
    [8] N. C. Bristowe et al. Oxide superlattices with alternating p and n interfaces. Physical Review B. 80, 045425 (2009)
    [9] A. D. Caviglia et al. Electric field control of the LaAlO3/SrTiO3 interface ground state. Nature 456, 624-627 (2008)
    [10] C. W. Bark et al. Switchable Induced Polarization in LaAlO3/SrTiO3 Heterostruc- tures. Nano Lett. 12, 1765-1771 (2012)
    [11] Imaging and control of domain structures in ferroelectric thin films via scanning force microscopy. Alexei Gruverman; Orlando Auciello; Hiroshi Tokumoto. Annu. Rev. Mater. Sci. 28, 101-123 (1998)
    [12] I. H. Tan et al. A selfconsistent solution of Schrodinger-Poisson equations using a nonuniform mesh. J. Appl. Phys. 68, 4071 (1990)
    [13] Ali Abou-Elnour and Klaus Schuenemann. A comparison between different numeri- cal methods used to solve Poisson’s and Schroedinger’s equations in semicomductor heterostructures. J. Appl. Phys. 74, 3273 (1993)
    [14] K. Yoshimatsu et al. Origin of Metallic States at the Heteointerface between Band Insulator LaAlO3 and SrTiO3. Physical Review Letters 101, 026802 (2008)
    [15] W. Meevasana et al. Creation and control of a two-dimensional electron liquid at the bare SrTiO3 surface. Nature Materials 10, 114-118 (2011)
    [16] K. Xiong et al. Defect states in the high-dielectric-constant gate oxide LaAlO3. Applied Physics Letters 89, 022907 (2006)
    [17] Tunable conductivity threshold at polar oxide interfaces. M. L. Reinle-Schmitt et al. Nature communications 3, 932. (2012)
    [18] L. Pintilie et al. Polarization reversal and capacitance-voltage characteristic of epi- taxial Pb(Zr,Ti)O3 layers. Applied Physics Letters 86, 192902 (2005)
    [19] S.K. Pandey et al. Structure, ferroelectric and optical properties of PZT thin films. Physica B 369 135-142 (2005)

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE