簡易檢索 / 詳目顯示

研究生: 紀宣汝
Ji, Shiuan-Ru
論文名稱: 被動採樣裝置與傳統採樣檢測極性有機污染物之比較
Comparison of passive sampling devices and conventional sampling for detection of polar organic pollutants
指導教授: 陳?如
Chen, Wan-Ru
學位類別: 碩士
Master
系所名稱: 工學院 - 環境工程學系
Department of Environmental Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 87
中文關鍵詞: 極性有機化合物累積採樣器被動式採樣裝置傳統採樣
外文關鍵詞: polar organic chemical integrative sampler, passive sampling devices, conventional sampling
相關次數: 點閱:89下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 環境監測為瞭解污染物在環境流布的方法,目前取得環境樣品的方式主要為傳統(主動式)採樣,即在短時間內採集少量樣品,但隨著工商業發展,許多化合物被製造生產,若其不易以污水處理程序去除且環境中存在於微量濃度,透過傳統採樣方式難以掌握其流布情形,因此被動式採樣器被發明以彌補傳統採樣方式的缺陷,其優點為增加對微量污染物檢測的能力及追蹤水中污染物時間和空間的變化趨勢。
    本研究挑選本實驗室過往曾經研究與監測的8種化合物作為目標化合物,包含壬基酚(4-nonylphenol)、磺胺噻唑(sulfathiazole, STZ)、磺胺嘧啶(sulfadiazine, SDZ)、磺胺二甲嘧啶(sulfamethazine, SMZ)、磺胺甲基嘧啶(sulfamerazine, SMR)、磺胺甲噁唑(sulfamethoxazole ,SMX)、待乙妥(diethyltoluamide, DEET)、雙酚A (bisphenol A, BPA),上述目標化合物多數屬於極性化合物,所以挑選極性有機化合物累積採樣器(polar organic chemical integrative sampler, POCIS)作為本研究的被動式採樣器。極性有機化合物累積採樣器計算水中污染物的時間加權平均(time-weighted average, TWA)濃度的參數採樣率(sampling rate, RS)會受到環境因子(如:溫度、pH、流速、溶解性有機物質、生物附著、導電度)的影響,因此採樣點選定急水溪上游,其水溫、pH變動不大,採樣器之多孔性半透膜選擇聚醚碸材質(polyethersulphone, PES),不易產生生物附著,因此本研究主要探討導電度、溶解性有機物質及流速對目標化合物RS的影響,並瞭解傳統採樣及被動式採樣器所檢測的污染物濃度差異。
    研究顯示導電度及溶解性有機物質對DEET及磺胺類抗生素的RS影響甚小,推測DEET及磺胺類抗生素對於PES膜有良好的親和力,所以不受導電度及溶解性有機物質影響,但轉速對DEET及磺胺類抗生素的RS影響較大,當轉速上升至64 rpm時,DEET及磺胺類抗生素的RS約上升2 – 3倍,但隨著轉速再上升至200 rpm時,則RS變動較小,因DEET及磺胺類抗生素的RS受到邊界層影響,當在低轉速的情況下,邊界層會變薄,DEET及磺胺類抗生素在水中傳輸到膜上的阻力也變小,所以RS會增加,而在高轉速的情況下,邊界層則不會再變薄,DEET及磺胺類抗生素在水中傳輸到膜上的阻力也不會變化,因此RS不會再增加。導電度及溶解性有機物質對BPA及4-NP的RS影響較大,當導電度上升至1.1 mS/cm時,BPA及4-NP的RS分別增加1.6倍、3.7倍,但當導電度再持續上升,則BPA及4-NP的RS逐漸下降,推測是導電度上升增加水中離子強度,造成化合物的溶解度下降,因此BPA及4-NP會傾向往吸附劑,所以RS會上升,但隨著水中離子強度增加,BPA及4-NP通過PES膜的阻力可能增加,所以造成RS下降;當溶解性有機物質濃度上升至1 mg/L時,BPA及4-NP分別下降2.8倍、1.3倍,當溶解性有機物質濃度再上升時,BPA的RS則是不太變動,4-NP的RS於溶解性有機物質上升至15 mg/L,與溶解性有機物質為0 mg/L的RS相比約上升1.4倍,推測是溶解性有機物質可能影響BPA及4-NP在PES膜傳輸的阻力,因此造成RS變動,但轉速對BPA及4-NP的RS影響較小,當轉速上升至64 rpm時,BPA及4-NP的RS變動較小,當轉速再上升至200 rpm時,BPA及4-NP的RS分別上升1.1倍、2.0倍,因BPA及4-NP的RS主要是受到膜控制的影響,因此RS不會隨著轉速上升,但當轉速上升,可能讓膜中的BPA及4-NP濃度更快達到平衡,變成由邊界層控制,所以RS會上升。
    本研究被動式採樣計算的濃度與傳統採樣分析濃度有相似的趨勢,如SMZ、BPA、4-NP在傳統採樣分析的濃度高時,被動式採樣計算的時間加權平均濃度也較高,且BPA的時間加權平均濃度與過往數據比對,亦落在過往數據的變動範圍內,故認為極性有機化合物累積採樣器是具有潛力成為環境採樣方法之一。另外,當傳統採樣分析濃度低於LOQ時,被動式採樣計算的時間加權平均濃度也是低於傳統採樣分析的LOQ,顯示被動式採樣較傳統採樣確實能增加檢測微量污染物的能力。

    The effects of conductivity, dissolved organic matter, and flow rate on sampling rates (RS) for endocrine disrupting compounds (4-nonylphenol (4-NP) and bisphenol A (BPA)), personal care products (diethyltoluamide (DEET)), and sulfonamide antibiotics (sulfathiazole (STZ), sulfadiazine (SDZ), sulfamethazine (SMZ), sulfamethazine (SMR), and sulfamethoxazole, (SMX)) by polar organic chemical integrative sampler with Oasis® HLB was investigated in simulation experiments. The results showed that the influence of conductivity and dissolved organic matter on the sulfonamide and DEET sampling rate was minor. It is speculated that sulfonamide and DEET have a good affinity for the polyethersulphone (PES) membrane. Because the boundary layer controlled the sulfonamide and DEET sampling rate, when rotational speed increased, their sampling rate was increased two times. The influence of conductivity and dissolved organic matter on BPA and 4-NP sampling rate was more significant. It is speculated that the conductivity produces a salting-out effect, which increases the ionic strength in water, so the compound's solubility decreases and tends to go to the adsorbent. Dissolved organic substances may affect the transmission resistance of BPA and 4-NP in the PES membrane, decreasing the sampling rate. The influence of flow rate on BPA and 4-NP sampling rate was minor by membrane control. In addition, Compare the concentration difference between passive sampling and conventional sampling. The results showed that contaminant concentrations from passive sampling showed similar trends to those from conventional sampling.

    摘要 I Abstract III 誌謝 VII 目錄 VIII 表目錄 X 圖目錄 XI 第一章 前言 1 第二章 文獻回顧 3 2-1 被動式採樣器 3 2-1-1半透膜採樣裝置(semipermeable membrane device, SPMD) 3 2-1-2極性有機化合物累積採樣器(polar organic chemical integrative sampler, POCIS) 4 2-1-3 Chemcatcher® 6 2-1-4聚矽氧橡膠(silicone rubber, SR) 7 2-2 本研究目標化合物 8 2-2-1物理及化學特性 8 2-2-2來源及在環境的影響 9 2-3 極性有機化合物累積採樣器(POCIS)的校正 15 2-3-1校正方法 15 2-3-2環境因子對採樣率(RS)的影響 16 2-3-3穿透績效參考物質(performance reference compounds, PRCs) 20 2-4 過往監測之急水溪及鹽水溪的水質概況 21 2-4-1過往監測之急水溪水質 21 2-4-2過往監測之鹽水溪水質 23 第三章 材料與方法 25 3-1 實驗藥品 26 3-2 採樣點位選擇 27 3-3 極性有機化合物累積採樣器材料及處理 27 3-3-1極性有機化合物累積採樣器 27 3-3-2 Oasis® HLB吸附劑清洗 29 3-3-3穿透績效參考物質(performance reference compounds, PRCs)添加 29 3-4 模擬實驗 31 3-4-1靜態模擬 31 3-4-2動態模擬 32 3-5 樣品前處理及分析 32 3-5-1樣品前處理 32 3-5-2水質分析及總有機碳(TOC)分析 33 3-5-3本研究目標化合物定量 33 3-5-4本研究目標化合物回收率計算 35 3-6 數據分析 36 3-6-1極性有機化合物累積採樣器之RS計算 36 3-6-2極性有機化合物累積採樣器之RS校正 37 3-6-3數據統計 37 第四章 結果與討論 38 4-1 Oasis® HLB吸附劑重量回收率 38 4-2 Oasis® HLB吸附劑的萃取回收率 39 4-3 靜態吸附實驗 40 4-3-1目標化合物之吸附動力學 40 4-3-2目標化合物之RS與log KOW的關係 41 4-4 河川水質分析及總有機碳(TOC)分析 42 4-4-1河川水質分析 42 4-4-2總有機碳(TOC)分析 44 4-5 環境因子導電度、溶解性有機物質及流速對RS的影響 45 4-5-1靜態實驗之導電度對RS的影響 45 4-5-2靜態實驗之溶解性有機物質對RS的影響 47 4-5-3動態實驗之流速對RS的影響 48 4-5-4本研究目標化合物的RS與參考文獻的RS比較 49 4-6 穿透績效參考物質(PRCs)的選擇及現地RS的校正 50 4-7 現地布署之被動式及傳統採樣比較 52 第五章 結論與建議 56 5-1 結論 56 5-2 建議 57 參考文獻 58 附錄 68

    Abou-Donia, M. B. (1996) Neurotoxicity resulting from coexposure to pyridostigmine bromide, DEET, and permethrin: implications of Gulf War chemical exposures. Journal of Toxicology and Environmental Health Part A, 48, 35-56.
    Ahel, M.; Giger, W. (1993) Aqueous solubility of alkylphenols and alkylphenol polyethoxylates. Chemosphere, 26, 1461-1470.
    Ahel, M.; Scully Jr, F. E.; Hoigné, J.; Giger, W. (1994) Photochemical degradation of nonylphenol and nonylphenol polyethoxylates in natural waters. Chemosphere, 28, 1361-1368.
    Ahrens, L.; Daneshvar, A.; Lau, A. E.; Kreuger, J. (2015) Characterization of five passive sampling devices for monitoring of pesticides in water. Journal of Chromatography A, 1405, 1-11.
    Allen, H. K.; Donato, J.; Wang, H. H.; Cloud-Hansen, K. A.; Davies, J.; Handelsman, J. (2010) Call of the wild: antibiotic resistance genes in natural environments. Nature Reviews Microbiology, 8, 251-259.
    Alvarez, D.; Stackelberg, P.; Petty, J.; Huckins, J.; Furlong, E.; Zaugg, S.; Meyer, M. (2005) Comparison of a novel passive sampler to standard water-column sampling for organic contaminants associated with wastewater effluents entering a New Jersey stream. Chemosphere, 61, 610-622.
    Alvarez, D. A. (2010) Guidelines for the use of the semipermeable membrane device (SPMD) and the polar organic chemical integrative sampler (POCIS) in environmental monitoring studies. US Geological Survey, techniques and methods, 1, 28.
    Alvarez, D. A.; Petty, J. D.; Huckins, J. N.; Jones‐Lepp, T. L.; Getting, D. T.; Goddard, J. P.; Manahan, S. E. (2004) Development of a passive, in situ, integrative sampler for hydrophilic organic contaminants in aquatic environments. Environmental Toxicology and Chemistry: An International Journal, 23, 1640-1648.
    Arditsoglou, A.; Voutsa, D. (2008) Passive sampling of selected endocrine disrupting compounds using polar organic chemical integrative samplers. Environmental Pollution, 156, 316-324.
    Balaam, J. L.; Grover, D.; Johnson, A. C.; Jürgens, M.; Readman, J.; Smith, A. J.; White, S.; Williams, R.; Zhou, J. L. (2010) The use of modelling to predict levels of estrogens in a river catchment: How does modelled data compare with chemical analysis and in vitro yeast assay results? Science of the total environment, 408, 4826-4832.
    Bartelt‐Hunt, S. L.; Snow, D. D.; Damon‐Powell, T.; Brown, D. L.; Prasai, G.; Schwarz, M.; Kolok, A. S. (2011) Quantitative evaluation of laboratory uptake rates for pesticides, pharmaceuticals, and steroid hormones using POCIS. Environmental Toxicology and Chemistry, 30, 1412-1420.
    Beneš, P.; Steinnes, E. (1974) In situ dialysis for the determination of the state of trace elements in natural waters. Water Research, 8, 947-953.
    Beni, N. N.; Snow, D. D.; Berry, E. D.; Mittelstet, A. R.; Messer, T. L.; Bartelt-Hunt, S. (2020) Measuring the occurrence of antibiotics in surface water adjacent to cattle grazing areas using passive samplers. Science of the Total Environment, 726, 138296.
    Berho, C.; Claude, B.; Coisy, E.; Togola, A.; Bayoudh, S.; Morin, P.; Amalric, L. (2017) Laboratory calibration of a POCIS-like sampler based on molecularly imprinted polymers for glyphosate and AMPA sampling in water. Analytical and Bioanalytical Chemistry, 409, 2029-2035.
    Booij, K.; Smedes, F.; Van Weerlee, E. M. (2002) Spiking of performance reference compounds in low density polyethylene and silicone passive water samplers. Chemosphere, 46, 1157-1161.
    Boyd, G. R.; Palmeri, J. M.; Zhang, S.; Grimm, D. A. (2004) Pharmaceuticals and personal care products (PPCPs) and endocrine disrupting chemicals (EDCs) in stormwater canals and Bayou St. John in New Orleans, Louisiana, USA. Science of the Total Environment, 333, 137-148.
    Briassoulis, G.; Narlioglou, M.; Hatzis, T. (2001) Toxic encephalopathy associated with use of DEET insect repellents: a case analysis of its toxicity in children. Human & experimental toxicology, 20, 8-14.
    Bueno, M. J. M.; Hernando, M. D.; Agüera, A.; Fernández-Alba, A. R. (2009) Application of passive sampling devices for screening of micro-pollutants in marine aquaculture using LC–MS/MS. Talanta, 77, 1518-1527.
    Careghini, A.; Mastorgio, A. F.; Saponaro, S.; Sezenna, E. (2015) Bisphenol A, nonylphenols, benzophenones, and benzotriazoles in soils, groundwater, surface water, sediments, and food: a review. Environmental Science and Pollution Research, 22, 5711-5741.
    Carpinteiro, I.; Schopfer, A.; Estoppey, N.; Fong, C.; Grandjean, D.; de Alencastro, L. F. (2016) Evaluation of performance reference compounds (PRCs) to monitor emerging polar contaminants by polar organic chemical integrative samplers (POCIS) in rivers. Analytical and bioanalytical chemistry, 408, 1067-1078.
    Charlestra, L.; Amirbahman, A.; Courtemanch, D. L.; Alvarez, D. A.; Patterson, H. (2012) Estimating pesticide sampling rates by the polar organic chemical integrative sampler (POCIS) in the presence of natural organic matter and varying hydrodynamic conditions. Environmental pollution, 169, 98-104.
    Chen, T.-C.; Shue, M.-F.; Yeh, Y.-L.; Kao, T.-J. (2010) Bisphenol A occurred in Kao-Pin River and its tributaries in Taiwan. Environmental Monitoring and Assessment, 161, 135-145.
    Chin, Y.-P.; Miller, P. L.; Zeng, L.; Cawley, K.; Weavers, L. K. (2004) Photosensitized degradation of bisphenol A by dissolved organic matter. Environmental science & technology, 38, 5888-5894.
    Costanzo, S.; Watkinson, A.; Murby, E.; Kolpin, D. W.; Sandstrom, M. W. (2007) Is there a risk associated with the insect repellent DEET (N, N-diethyl-m-toluamide) commonly found in aquatic environments? Science of the Total Environment, 384, 214-220.
    Ding, C.; He, J. (2010) Effect of antibiotics in the environment on microbial populations. Applied microbiology and biotechnology, 87, 925-941.
    Djomte, V. T.; Taylor, R. B.; Chen, S.; Booij, K.; Chambliss, C. K. (2018) Effects of hydrodynamic conditions and temperature on polar organic chemical integrative sampling rates. Environmental toxicology and chemistry, 37, 2331-2339.
    Duan, W.; Cui, H.; Jia, X.; Huang, X. (2022) Occurrence and ecotoxicity of sulfonamides in the aquatic environment: A review. Science of The Total Environment, 153178.
    Díaz-Cruz, M. S.; de Alda, M. J. L.; Barceló, D. (2006) Determination of antimicrobials in sludge from infiltration basins at two artificial recharge plants by pressurized liquid extraction–liquid chromatography–tandem mass spectrometry. Journal of Chromatography A, 1130, 72-82.
    Ebele, A. J.; Oluseyi, T.; Drage, D. S.; Harrad, S.; Abdallah, M. A.-E. (2020) Occurrence, seasonal variation and human exposure to pharmaceuticals and personal care products in surface water, groundwater and drinking water in Lagos State, Nigeria. Emerging Contaminants, 6, 124-132.
    ECHA. (2003) European Union Summary Risk Assessment Report 4,4'-ISOPROPYLIDENEDIPHENOL (BISPHENOL-A)
    ECHA. (2012) Substance Name: 4-Nonylphenol, branched and linear.
    Economou, V.; Gousia, P. (2015) Agriculture and food animals as a source of antimicrobial-resistant bacteria. Infection and drug resistance, 8, 49.
    Estoppey, N.; Mathieu, J.; Diez, E. G.; Sapin, E.; Delémont, O.; Esseiva, P.; de Alencastro, L. F.; Coudret, S.; Folly, P. (2019) Monitoring of explosive residues in lake-bottom water using polar organic chemical integrative sampler (POCIS) and chemcatcher: determination of transfer kinetics through polyethersulfone (PES) membrane is crucial. Environmental pollution, 252, 767-776.
    Fürhacker, M.; Scharf, S.; Weber, H. (2000) Bisphenol A: emissions from point sources. Chemosphere, 41, 751-756.
    Feng, M.; Baum, J. C.; Nesnas, N.; Lee, Y.; Huang, C.-H.; Sharma, V. K. (2019) Oxidation of sulfonamide antibiotics of six-membered heterocyclic moiety by ferrate (VI): kinetics and mechanistic insight into SO2 extrusion. Environmental science & technology, 53, 2695-2704.
    Fukuoka, T.; Tatehata, H.; Mochizuki, A. (2001) Synthesis and characterization of poly (hydroxyether). I. Poly (hydroxyether) based on 2, 2‐bis (4‐hydroxyphenyl) hexafluoropropane and 2, 2‐bis (4‐hydroxyphenyl) propane. Journal of applied polymer science, 80, 1687-1696.
    García-Galán, M. J.; Díaz-Cruz, M. S.; Barceló, D. (2012) Kinetic studies and characterization of photolytic products of sulfamethazine, sulfapyridine and their acetylated metabolites in water under simulated solar irradiation. Water research, 46, 711-722.
    Garoma, T.; Umamaheshwar, S. K.; Mumper, A. (2010) Removal of sulfadiazine, sulfamethizole, sulfamethoxazole, and sulfathiazole from aqueous solution by ozonation. Chemosphere, 79, 814-820.
    Ge, L.; Zhang, P.; Halsall, C.; Li, Y.; Chen, C.-E.; Li, J.; Sun, H.; Yao, Z. (2019) The importance of reactive oxygen species on the aqueous phototransformation of sulfonamide antibiotics: kinetics, pathways, and comparisons with direct photolysis. Water research, 149, 243-250.
    Godlewska, K.; Stepnowski, P.; Paszkiewicz, M. (2021) Pollutant analysis using passive samplers: principles, sorbents, calibration and applications. A review. Environmental Chemistry Letters, 19, 465-520.
    Gong, X.; Li, K.; Wu, C.; Wang, L.; Sun, H. (2018) Passive sampling for monitoring polar organic pollutants in water by three typical samplers. Trends in Environmental Analytical Chemistry, 17, 23-33.
    Guibal, R.; Lissalde, S.; Guibaud, G. (2020) Experimental estimation of 44 pharmaceutical polar organic chemical integrative sampler sampling rates in an artificial river under various flow conditions. Environmental Toxicology and Chemistry, 39, 1186-1195.
    GÜZEL, E. (2021) Occurrence and environmental risks assessment of DEET (N, N-diethyl-m-toluamide) pesticide in Seyhan River, Turkey. Journal of Anatolian Environmental and Animal Sciences, 6, 345-351.
    Harman, C.; Bøyum, O.; Thomas, K. V.; Grung, M. (2009) Small but different effect of fouling on the uptake rates of semipermeable membrane devices and polar organic chemical integrative samplers. Environmental Toxicology and Chemistry: An International Journal, 28, 2324-2332.
    Heemken, O.; Reincke, H.; Stachel, B.; Theobald, N. (2001) The occurrence of xenoestrogens in the Elbe river and the North Sea. Chemosphere, 45, 245-259.
    Huang, Y.; Wong, C.; Zheng, J.; Bouwman, H.; Barra, R.; Wahlström, B.; Neretin, L.; Wong, M. H. (2012) Bisphenol A (BPA) in China: a review of sources, environmental levels, and potential human health impacts. Environment international, 42, 91-99.
    Huckins, J. N.; Manuweera, G. K.; Petty, J. D.; Mackay, D.; Lebo, J. A. (1993) Lipid-containing semipermeable membrane devices for monitoring organic contaminants in water. Environmental science & technology, 27, 2489-2496.
    Huckins, J. N.; Tubergen, M. W.; Manuweera, G. K. (1990) Semipermeable membrane devices containing model lipid: A new approach to monitoring the bioavaiiability of lipophilic contaminants and estimating their bioconcentration potential. Chemosphere, 20, 533-552.
    Isobe, T.; Nishiyama, H.; Nakashima, A.; Takada, H. (2001) Distribution and behavior of nonylphenol, octylphenol, and nonylphenol monoethoxylate in Tokyo metropolitan area: their association with aquatic particles and sedimentary distributions. Environmental Science & Technology, 35, 1041-1049.
    Jeong, Y.; Schäffer, A.; Smith, K. (2018) Comparison of the sampling rates and partitioning behaviour of polar and non-polar contaminants in the polar organic chemical integrative sampler and a monophasic mixed polymer sampler for application as an equilibrium passive sampler. Science of the Total Environment, 627, 905-915.
    Joyce, A. S.; Burgess, R. M. (2018) Using performance reference compounds to compare mass transfer calibration methodologies in passive samplers deployed in the water column. Environmental toxicology and chemistry, 37, 2089-2097.
    Kang, J.; Kondo, F. (2006) Bisphenol A in the surface water and freshwater snail collected from rivers around a secure landfill. Bulletin of environmental contamination and toxicology, 76, 113-118.
    Kannan, K.; Keith, T.; Naylor, C.; Staples, C.; Snyder, S.; Giesy, J. (2003) Nonylphenol and nonylphenol ethoxylates in fish, sediment, and water from the Kalamazoo River, Michigan. Archives of Environmental Contamination and Toxicology, 44, 0077-0082.
    Kemper, N. (2008) Veterinary antibiotics in the aquatic and terrestrial environment. Ecological indicators, 8, 1-13.
    Kim, I.; Tanaka, H. (2009) Photodegradation characteristics of PPCPs in water with UV treatment. Environment international, 35, 793-802.
    Kingston, J. K.; Greenwood, R.; Mills, G. A.; Morrison, G. M.; Persson, L. B. (2000) Development of a novel passive sampling system for the time-averaged measurement of a range of organic pollutants in aquatic environments. Journal of Environmental Monitoring, 2, 487-495.
    Li, D.; Kim, M.; Shim, W. J.; Yim, U. H.; Oh, J.-R.; Kwon, Y.-J. (2004) Seasonal flux of nonylphenol in Han River, Korea. Chemosphere, 56, 1-6.
    Li, H.; Helm, P. A.; Metcalfe, C. D. (2010a) Sampling in the Great Lakes for pharmaceuticals, personal care products, and endocrine‐disrupting substances using the passive polar organic chemical integrative sampler. Environmental Toxicology and Chemistry: An International Journal, 29, 751-762.
    Li, H.; Helm, P. A.; Paterson, G.; Metcalfe, C. D. (2011) The effects of dissolved organic matter and pH on sampling rates for polar organic chemical integrative samplers (POCIS). Chemosphere, 83, 271-280.
    Li, H.; Vermeirssen, E. L.; Helm, P. A.; Metcalfe, C. D. (2010b) Controlled field evaluation of water flow rate effects on sampling polar organic compounds using polar organic chemical integrative samplers. Environmental Toxicology and Chemistry, 29, 2461-2469.
    Li, Y.; Yang, C.; Bao, Y.; Ma, X.; Lu, G.; Li, Y. (2016) Aquatic passive sampling of perfluorinated chemicals with polar organic chemical integrative sampler and environmental factors affecting sampling rate. Environmental Science and Pollution Research, 23, 16096-16103.
    Lin, C.-E.; Chang, C.-C.; Lin, W.-C. (1997) Migration behavior and separation of sulfonamides in capillary zone electrophoresis III. Citrate buffer as a background electrolyte. Journal of Chromatography A, 768, 105-112.
    Lis, H.; Stepnowski, P.; Caban, M. (2019) Salinity and pH as factors affecting the passive sampling and extraction of pharmaceuticals from water. Journal of separation science, 42, 2949-2956.
    Lissalde, S.; Mazzella, N.; Mazellier, P. (2014) Polar organic chemical integrative samplers for pesticides monitoring: Impacts of field exposure conditions. Science of the total environment, 488, 188-196.
    MacLeod, S. L.; McClure, E. L.; Wong, C. S. (2007) Laboratory calibration and field deployment of the polar organic chemical integrative sampler for pharmaceuticals and personal care products in wastewater and surface water. Environmental Toxicology and Chemistry: An International Journal, 26, 2517-2529.
    Martínez, F.; Gómez, A. (2002) Thermodynamics of partitioning of some sulfonamides in 1‐octanol–buffer and liposome systems. Journal of physical organic chemistry, 15, 874-880.
    Mazzella, N.; Lissalde, S.; Moreira, S.; Delmas, F.; Mazellier, P.; Huckins, J. N. (2010) Evaluation of the use of performance reference compounds in an Oasis-HLB adsorbent based passive sampler for improving water concentration estimates of polar herbicides in freshwater. Environmental science & technology, 44, 1713-1719.
    Moschet, C.; Vermeirssen, E. L.; Singer, H.; Stamm, C.; Hollender, J. (2015) Evaluation of in-situ calibration of Chemcatcher passive samplers for 322 micropollutants in agricultural and urban affected rivers. Water Research, 71, 306-317.
    Park, S. Y.; Bae, Y. H. (1999) Novel pH‐sensitive polymers containing sulfonamide groups. Macromolecular rapid communications, 20, 269-273.
    Rykowska, I.; Wasiak, W. (2006) Properties, threats, and methods of analysis of bisphenol A and its derivatives. Acta chromatographica, 16, 7.
    Shao, B.; Hu, J.; Yang, M.; An, W.; Tao, S. (2005) Nonylphenol and nonylphenol ethoxylates in river water, drinking water, and fish tissues in the area of Chongqing, China. Archives of environmental contamination and toxicology, 48, 467-473.
    Sharma, V. K.; Anquandah, G. A.; Yngard, R. A.; Kim, H.; Fekete, J.; Bouzek, K.; Ray, A. K.; Golovko, D. (2009) Nonylphenol, octylphenol, and bisphenol-A in the aquatic environment: a review on occurrence, fate, and treatment. Journal of Environmental Science and Health Part A, 44, 423-442.
    Shen, M.; Feng, Z.; Liang, X.; Chen, H.; Zhu, C.; Du, B.; Li, Q.; Zeng, L. (2022) Release and Gas–Particle Partitioning Behavior of Liquid Crystal Monomers during the Dismantling of Waste Liquid Crystal Display Panels in E-Waste Recycling Facilities. Environmental Science & Technology, 56, 3106-3116.
    Staples, C. A.; Dome, P. B.; Klecka, G. M.; Oblock, S. T.; Harris, L. R. (1998) A review of the environmental fate, effects, and exposures of bisphenol A. Chemosphere, 36, 2149-2173.
    Succop, P. A.; Clark, S.; Chen, M.; Galke, W. (2004) Imputation of data values that are less than a detection limit. Journal of occupational and environmental hygiene, 1, 436-441.
    Sukul, P.; Spiteller, M. (2006) Sulfonamides in the environment as veterinary drugs. Reviews of environmental contamination and toxicology, 67-101.
    Sun, H.; Yang, X.; Li, X.; Jin, X. (2019) Development of predictive models for silicone rubber–water partition coefficients of hydrophobic organic contaminants. Environmental Science: Processes & Impacts, 21, 2020-2030.
    Tapie, N.; Devier, M.-H.; Soulier, C.; Creusot, N.; Le Menach, K.; Ait-Aissa, S.; Vrana, B.; Budzinski, H. (2011) Passive samplers for chemical substance monitoring and associated toxicity assessment in water. Water Science and Technology, 63, 2418-2426.
    Teixidó, M.; Pignatello, J. J.; Beltrán, J. L.; Granados, M.; Peccia, J. (2011) Speciation of the ionizable antibiotic sulfamethazine on black carbon (biochar). Environmental science & technology, 45, 10020-10027.
    Terzopoulou, E.; Voutsa, D. (2016) Active and passive sampling for the assessment of hydrophilic organic contaminants in a river basin-ecotoxicological risk assessment. Environmental Science and Pollution Research, 23, 5577-5591.
    Tisch, M.; Schmezer, P.; Faulde, M.; Groh, A.; Maier, H. (2002) Genotoxicity studies on permethrin, DEET and diazinon in primary human nasal mucosal cells. European Archives of Oto-rhino-laryngology, 259, 150-153.
    Togola, A.; Budzinski, H. (2007) Development of polar organic integrative samplers for analysis of pharmaceuticals in aquatic systems. Analytical chemistry, 79, 6734-6741.
    Tran, A. T.; Hyne, R. V.; Doble, P. (2007) Calibration of a passive sampling device for time‐integrated sampling of hydrophilic herbicides in aquatic environments. Environmental Toxicology and Chemistry: An International Journal, 26, 435-443.
    Vermeirssen, E. L.; Dietschweiler, C.; Escher, B. I.; van der Voet, J. r.; Hollender, J. (2012) Transfer kinetics of polar organic compounds over polyethersulfone membranes in the passive samplers POCIS and Chemcatcher. Environmental science & technology, 46, 6759-6766.
    Vrana, B.; Allan, I. J.; Greenwood, R.; Mills, G. A.; Dominiak, E.; Svensson, K.; Knutsson, J.; Morrison, G. (2005) Passive sampling techniques for monitoring pollutants in water. TrAC Trends in Analytical Chemistry, 24, 845-868.
    Washington, M. T.; Moorman, T. B.; Soupir, M. L.; Shelley, M.; Morrow, A. J. (2018) Monitoring tylosin and sulfamethazine in a tile-drained agricultural watershed using polar organic chemical integrative sampler (POCIS). Science of the Total Environment, 612, 358-367.
    Weeks, J.; Guiney, P.; Nikiforov, A. (2012) Assessment of the environmental fate and ecotoxicity of N, N‐diethyl‐m‐toluamide (DEET). Integrated Environmental Assessment and Management, 8, 120-134.
    Xu, M.; Yan, S.; Sun, S.; Ni, Z.; Wu, W.; Sun, J. (2022) N, N-diethyl-m-toluamide (DEET) degradation by• OH and SO4•−-assisted AOPs in wastewater treatment: Theoretical studies into mechanisms, kinetics and toxicity. Journal of Environmental Chemical Engineering, 10, 108435.
    Yabuki, Y.; Nagai, T.; Inao, K.; Ono, J.; Aiko, N.; Ohtsuka, N.; Tanaka, H.; Tanimori, S. (2016) Temperature dependence on the pesticide sampling rate of polar organic chemical integrative samplers (POCIS). Bioscience, Biotechnology, and Biochemistry, 80, 2069-2075.
    Yang, X.; Chen, F.; Meng, F.; Xie, Y.; Chen, H.; Young, K.; Luo, W.; Ye, T.; Fu, W. (2013) Occurrence and fate of PPCPs and correlations with water quality parameters in urban riverine waters of the Pearl River Delta, South China. Environmental Science and Pollution Research, 20, 5864-5875.
    Yates, K.; Davies, I.; Webster, L.; Pollard, P.; Lawton, L.; Moffat, C. (2007) Passive sampling: partition coefficients for a silicone rubber reference phase. Journal of Environmental Monitoring, 9, 1116-1121.
    Yoon, Y.; Ryu, J.; Oh, J.; Choi, B.-G.; Snyder, S. A. (2010) Occurrence of endocrine disrupting compounds, pharmaceuticals, and personal care products in the Han River (Seoul, South Korea). Science of the Total Environment, 408, 636-643.
    You, L.; Nguyen, V. T.; Pal, A.; Chen, H.; He, Y.; Reinhard, M.; Gin, K. Y.-H. (2015) Investigation of pharmaceuticals, personal care products and endocrine disrupting chemicals in a tropical urban catchment and the influence of environmental factors. Science of the Total Environment, 536, 955-963.
    Zhang, C.; Lai, C.; Zeng, G.; Huang, D.; Yang, C.; Wang, Y.; Zhou, Y.; Cheng, M. (2016) Efficacy of carbonaceous nanocomposites for sorbing ionizable antibiotic sulfamethazine from aqueous solution. Water research, 95, 103-112.
    Zhang, G. G.; Gu, C.; Zell, M. T.; Burkhardt, R. T.; Munson, E. J.; Grant, D. J. (2002) Crystallization and transitions of sulfamerazine polymorphs. Journal of pharmaceutical sciences, 91, 1089-1100.
    Zhang, Z.; Hibberd, A.; Zhou, J. L. (2008) Analysis of emerging contaminants in sewage effluent and river water: comparison between spot and passive sampling. Analytica chimica acta, 607, 37-44.
    Zhou, L.-J.; Ying, G.-G.; Liu, S.; Zhao, J.-L.; Yang, B.; Chen, Z.-F.; Lai, H.-J. (2013) Occurrence and fate of eleven classes of antibiotics in two typical wastewater treatment plants in South China. Science of the total environment, 452, 365-376.
    王正雄; 張小萍; 黃壬塊; 李宜樺; 王世冠; 洪文宗; 陳珮珊. (2001) 環境荷爾蒙─ 壬基苯酚殘留調查及其對雄鯉魚生理效應之研究. 台灣公共衛生雜誌, 20, 202-215.
    行政院國家科學及技術委員會. (2014) 硝化/氧合多環芳香烴與個人保健品於水體、底泥、魚體器官之分布.
    行政院環境保護署. (2009) 被動式半透膜應用於環境採樣檢測之研究.
    行政院環境保護署. (2019) 108年度前瞻水環境改善綜合管理計畫(南區).
    行政院環境保護署. (2020) 109年化學物質環境流布背景調查及釋放量管理策略研析專案工作計畫.
    行政院環境保護署. (2021) 急水溪及鹽水溪污染整治工作督導與協調會.
    行政院環境保護署環境檢驗所. (2009) 水中醫藥類及其代謝之殘留化學物質之檢測技術建立研究(3/4).
    行政院環境保護署環境檢驗所. (2010) 水中醫藥類及其代謝之殘留化學物質之檢測技術建立研究(4/4).
    呂小玉. (2020) 以吸/脫附管柱試驗探討流速對雙酚 A 現地 Koc 的影響(碩士). 國立成功大學環境工程學系.
    周晏如. (2016) 環境中有機質對於雙酚 A 於土水介面分配之影響(碩士). 國立成功大學環境工程學系.
    林琪媛. (2017) 機械混合對雙酚 A 和壬基酚在底泥有機質/水介面之非平衡現象之影響(碩士). 國立成功大學環境工程學系.
    凌永健; 陳柏嘉; 宋福祥; 王振宇; 葉明軒. (2011) 被動式採樣器於環境檢測之應用. 科儀新知, 59-66.
    陳妍秀. (2015) 極性有機化合物被動採樣器, 連續式水體監測主動採樣器, 與非連續採樣對量測河水中的個人保健用品濃度之比較(碩士). 國立臺灣大學公共衛生學院環境衛生研究所.
    黃孟桉. (2021) 探討有機碳含量對壬基酚之平衡 Koc 與現地 Koc 的影響(碩士). 國立成功大學環境工程學系.
    經濟部水利署第六河川局. (2013) 鹽水溪(含支流)河川情勢調查.

    無法下載圖示
    2028-01-15公開
    電子論文及紙本論文均尚未授權公開
    QR CODE