| 研究生: |
陳羿甯 Chen, Yi-Ning |
|---|---|
| 論文名稱: |
白蝦Dscam 表現量、異構型歧異度與病原體耐受度之關聯性 Relationships among Dscam expression and diversity and pathogen tolerance in white shrimp |
| 指導教授: |
王涵青
Wang, Han-Ching |
| 學位類別: |
碩士 Master |
| 系所名稱: |
生物科學與科技學院 - 生物科技研究所 Institute of Biotechnology |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 英文 |
| 論文頁數: | 67 |
| 中文關鍵詞: | 唐氏綜合症細胞黏附分子 、特異性識別 、白點症病毒 |
| 外文關鍵詞: | white shrimp, Dscam, Dscam isoform, WSSV |
| 相關次數: | 點閱:148 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
節肢動物Dscam屬於免疫球蛋白大家族中的一份子,參與免疫功能以及神經發育。典型的節肢動物Dscam具有10個免疫球蛋白結構域、6個第三型纖維黏接蛋白結構域、一個穿膜區以及胞質尾。然而在甲殼類動物中,發現除了典型Dscam外,也有不具胞質尾的Dscam存在。在結構上,Dscam於其胞外區域具有三個高度變異區,分別位在Ig2、Ig3以及Ig7,這些變異區的產生主要來自替代性RNA剪接機制,而因此產生多種Dscam異構型,並使得Dscam能夠辨認不同的病原體。因此本研究主要探討白蝦Dscam的表現量、異構型歧異度與對病原體耐受度的關聯性。本研究針對白蝦個體進行病毒感染前後Dscam表現量及異構型歧異度之分析,並從中了解其對蝦體病原體耐受度之重要性。因此首先針對16隻蝦體進行病毒感染前後Dscam的表現量以及感染後病毒帶原的偵測,並選定11隻蝦體進行Dscam異構型歧異度的分析,由此發現了病毒感染後Dscam異構型歧異度有降低的現象,並發現異構型歧異度的降低有助於增加蝦體對於病毒感染後的耐受性。藉由感染前後異構型種類的變化,我們篩選出一些可能對WSSV有結合專一性的Dscam異構型。
Arthropod Dscam belongs to the Ig superfamily. The protein plays a variety of roles in the immune system and also participates in neural guidance. The typical structure of Dscam consists of 10 Ig domains, six fibronectin type III (FN) repeats, a transmembrane (TM) domain, and a cytoplasmic tail. A unique tail-less Dscam (lacking either a TM domain or a cytoplasmic tail) has also been identified in crustaceans. Hypervariability in the Dscam extracellular region (due to alternative splicing in the Ig2, Ig3, and Ig7 regions) appears to enable the recognition of numerous pathogens. The objective of this study was to identify relationships among Dscam expression, the resulting diversity of Dscam isoforms, and their ability to fight pathogens. Individual shrimp were tagged and divided into two groups: those injected with PBS (control) and those injected with white spot syndrome virus (WSSV). Hemocyte samples were collected pre-infection and at 48 hpi. Real-time PCR was used to detect the expression of Dscam and WSSV VP28, whereupon Dscam Ig2 and Ig3 regions were amplified. Based on the Dscam response in individual shrimp (sampled before and after viral infection), we concluded that a decrease in Dscam variability may render shrimp less susceptible to infection with WSSV. In addition, we identified specific Dscam isoforms seem to show an ability against WSSV.
Adema, C.M., Hertel, L.A., Miller, R.D., Loker, E.S. A family of fibrinogen-related proteins that precipitates parasite-derived molecules is produced by an invertebrate after infection. Proceedings of the National Academy of Sciences of the United States of America 94, 8691-8696, 1997.
Agarwala, K.L., Ganesh, S., Tsutsumi, Y., Suzuki, T., Amano, K., Yamakawa, K. Cloning and functional characterization of DSCAML1, a novel DSCAM-like cell adhesion molecule that mediates homophilic intercellular adhesion. Biochemical and Biophysical Research Communications 285, 760-772, 2001.
Agaisse, H. An adaptive immune response in Drosophila? Cell Host and Microbe 1, 91-93, 2007.
Barrow, A.D., Trowsdale, J. You say ITAM and I say ITIM, let's call the whole thing off: the ambiguity of immunoreceptor signalling. European Journal of Immunology 36, 1646-1653, 2006.
Boehm, T. Two in one: dual function of an invertebrate antigen receptor. Nature Immunology 8, 1031-1033, 2007.
Brites, D., McTaggart, S., Morris, K., Anderson, J., Thomas, K., Colson, I., Fabbro, T., Little, T.J., Ebert, D., Du Pasquier, L. The Dscam homologue of the crustacean Daphnia is diversified by alternative splicing like in insects. Molecular Biology and Evolution 25, 1429-1439, 2008.
Brites, D., Encinas-Viso, F., Ebert, D., Du Pasquier, L., Haag, C.R. Population genetics of duplicated alternatively spliced exons of the Dscam in Daphnia and Drosophila. PLoS One 6, 1-10, 2011.
Bull, J.C., Ryabov, E.V., Prince, G., Mead, A., Zhang, C., Baxter, L.A., Pell, J.K., Osborne, J.L., Chandler, D. A strong immune response in young adult honeybees masks their increased susceptibility to infection compared to older bees. PLoS Pathogens 8, 1-11, 2012.
Celotto A.M., Graveley, B.R. Alternative splicing of the Drosophila Dscam pre-mRNA is both temporally and spatially regulated. Genetics 159, 599-608, 2001.
Caamaño, J., Hunter, C.A. NF-kappaB family of transcription factors: central regulators of innate and adaptive immune functions. Clinical Microbiology Reviews 15, 414-429, 2002.
Christophides, G.K., Zdobnov, E., Barillas-Mury, C., Birney, E., Blandin, S., Blass, C., Brey, P.T., Collins, F.H., Danielli, A., Dimopoulos, G., Hetru, C., Hoa, N.T., Hoffmann, J.A., Kanzok, S.M., Letunic, I., Levashina, E.A., Loukeris, T.G., Lycett, G., Meister, S., Michel, K., Moita, L.F., Müller, H.M., Osta, M.A., Paskewitz, S.M., Reichhart, J.M., Rzhetsky, A., Troxler, L., Vernick, K.D., Vlachou, D., Volz, J., von Mering, C., Xu, J., Zheng, L., Bork, P., Kafatos, F.C. Immunity-related genes and gene families in Anopheles gambiae. Science 298, 159-165, 2002.
Chou, P.H., Chang, H.S., Chen, I.T., Lin, H.Y., Chen, Y.M., Yang, H.L., Wang, H.C. The putative invertebrate adaptive immune protein Litopenaeus vannamei Dscam (LvDscam) is the first reported Dscam to lack a transmembrane domain and cytoplasmic tail. Developmental and Comparative Immunology 33, 1258-1267, 2009.
Chou, P.H., Chang, H.S., Chen, I.T., Lee, C.W., Hung, H.Y., Wang, H.C. Penaeus monodon Dscam (PmDscam) has a highly diverse cytoplasmic tail and is the first membrane-bound shrimp Dscam to be reported. Fish and Shellfish Immunology 30, 1109-1123, 2011.
Dong, Y., Taylor, H.E., Dimopoulos, G. AgDscam, a hypervariable immunoglobulin domain-containing receptor of the Anopheles gambiae innate immune system. PLoS Biology 4, 1137-1146, 2006.
Faulhaber, L.M., Karp, R.D. A diphasic immune response against bacteria in the American cockroach. Immunology 75, 378-381, 1992.
Fearon, D.T., Locksley, R.M. The instructive role of innate immunity in the acquired immune response. Science 272, 50-53, 1996.
Graveley, B.R. Mutually exclusive splicing of the insect Dscam pre-mRNA directed by competing intronic RNA secondary structures. Cell 123, 65-73, 2005.
Gayed, P.M. Toward a modern synthesis of immunity: Charles A. Janeway Jr. and the immunologist's dirty little secret. The Yale Journal of Biology and Medicine 84, 131-138, 2011.
Graham, A.L., Shuker, D.M., Pollitt, L.C., Auld, S.K.J.R., Wilson A.J., Little, T.J. Fitness consequences of immune responses: strengthening the empirical framework for ecoimmunology. Functional Ecology 25, 5-17, 2011.
Gilbert, F.B., Cunha, P., Jensen, K., Glass, E.J., Foucras, G., Robert-Granié, C., Rupp, R., Rainard, P. Differential response of bovine mammary epithelial cells to Staphylococcus aureus or Escherichia coli agonists of the innate immune system. Veterinary Research 44, 1-22, 2013.
Hoffmann, J.A., Kafatos, F.C., Janeway, C.A., Ezekowitz, R.A. Phylogenetic perspectives in innate immunity. Science 284, 1313-1318, 1999.
Hoffmann, J.A., Reichhart, J.M. Drosophila innate immunity: an evolutionary perspective. Nature Immunology 3, 121-126, 2002.
Hultmark, D. Drosophila immunity: paths and patterns. Current Opinion in Immunology 15, 12-19, 2003.
Hung, H.Y., Ng, T.H., Lin, J.H., Chiang, Y.A., Chuang, Y.C., Wang, H.C. Properties of Litopenaeus vannamei Dscam (LvDscam) isoforms related to specific pathogen recognition. Fish and Shellfish Immunology 35, 1272-1281, 2013.
Klein, J. Are invertebrates capable of anticipatory immune responses? Scandinavian Journal of Immunology 29, 499-505, 1989.
Kurtz, J., Franz, K. Innate defence: evidence for memory in invertebrate immunity. Nature 425, 37-38, 2003.
Kurtz, J., Armitage, S.A. Alternative adaptive immunity in invertebrates. Trends in Immunology 27, 493-496, 2006.
Léonard, P.M., Adema, C.M., Zhang, S.M., Loker, E.S. Structure of two FREP genes that combine IgSF and fibrinogen domains, with comments on diversity of the FREP gene family in the snail Biomphalaria glabrata. Gene 269, 155-165, 2001.
Lemaitre, B., Hoffmann, J. The host defense of Drosophila melanogaster. Annual Review of Immunology 25, 697-743, 2007.
Lee, C., Kim, N., Roy, M., Graveley, B.R. Massive expansions of Dscam splicing diversity via staggered homologous recombination during arthropod evolution. RNA 16, 91-105, 2010.
Medzhitov, R., Janeway, C.A. Innate immune induction of the adaptive immune response. Cold Spring Harbor Symposia on Quantitative Biology 64, 429-435, 1999.
Mani, R.S., Chinnaiyan, A.M. Triggers for genomic rearrangements: insights into genomic, cellular and environmental influences. Nature Reviews Genetics 11, 819-829, 2010.
Ng, TH., Hung, H.Y., Chiang, Y.A., Lin, J.H., Chen, Y.N., Chuang, Y.C., Wang, H.C. WSSV-induced crayfish Dscam shows durable immune behavior. Fish and Shellfish Immunology 40, 78-90, 2014.
Pulendran, B., Ahmed, R. Translating innate immunity into immunological memory: implications for vaccine development. Cell 124, 849-863, 2006.
Rolff, J., Siva-Jothy, M.T. Invertebrate ecological immunology. Science 301, 472-475, 2003.
Rimer, J., Cohen, I.R., Friedman, N. Do all creatures possess an acquired immune system of some sort? BioEssays 36, 273-281, 2014.
Schmucker, D., Clemens, J.C., Shu, H., Worby, C.A., Xiao, J., Muda, M., Dixon, J.E., Zipursky, S.L. Drosophila Dscam is an axon guidance receptor exhibiting extraordinary molecular diversity. Cell 101, 671-684, 2000.
Sadd, B.M., Schmid-Hempel, P. Insect immunity shows specificity in protection upon secondary pathogenexposure. Current Biology 16, 1206-1210, 2006.
Stuart, L.M., Ezekowitz, R.A. Phagocytosis and comparative innate immunity: learning on the fly. Nature Reviews Immunology 8, 131-141, 2008.
Schmucker, D., Chen, B. Dscam and DSCAM: complex genes in simple animals, complex animals yet simple genes. Genes and Development 23, 147-156, 2009.
Schatz, D.G., Ji, Y. Recombination centres and the orchestration of V(D)J recombination. Nature Reviews Immunology 11, 251-263, 2011.
Theopold, U., Schmidt, O., Söderhäll, K., Dushay, M.S. Coagulation in arthropods: defence, wound closure and healing. Trends in Immunology 25, 289-294, 2004.
Terwilliger, D.P., Buckley, K.M., Brockton, V., Ritter, N.J., Smith, L.C. Distinctive expression patterns of 185/333 genes in the purple sea urchin, Strongylocentrotus purpuratus: an unexpectedly diverse family of transcripts in response to LPS, beta-1,3-glucan, and dsRNA. Biomed Central Molecular Biology 8, 1-16, 2007.
Voge, C., Teichmann, S.A., Chothia, C. The immunoglobulin superfamily in Drosophila melanogaster and Caenorhabditis elegans and the evolution of complexity. Development 130, 6317-6328, 2003.
Wilson-Rich, N., Dres, S.T., Starks, P.T. The ontogeny of immunity: development of innate immune strength in the honey bee (Apis mellifera). Journal of Insect Physiology 54, 1392-1399, 2008.
Watthanasurorot, A., Jiravanichpaisal, P., Liu, H., Söderhäll, I., Söderhäll, K. Bacteria-Induced Dscam Isoforms of the Crustacean, Pacifastacus leniusculus. PLoS Pathogens 7, 1-14, 2011.
Yamakawa, K., Huot, Y.K., Haendelt, M.A., Hubert, R., Chen, X.N., Lyons, G.E., Korenberg, J.R. DSCAM: a novel member of the immunoglobulin superfamily maps in a Down syndrome region and is involved in the development of the nervous system. Human Molecular Genetics 7, 227-237, 1998.
Yang, X., Cox-Foster, D.L. Impact of an ectoparasite on the immunity and pathology of an invertebrate: evidence for host immunosuppression and viral amplification. Proceedings of the National Academy of Sciences of the United States of America 102, 7470-7475, 2005.
Zhang, S.M., Adema, C.M., Kepler, T.B., Loker, E.S. Diversification of Ig superfamily genes in an invertebrate. Science 305, 251-254, 2004.
Zhong, D., Pai, A., Wang, M.H., Keech, N., Yan, G. Fine-scale analysis of parasite resistance genes in the red flour beetle, Tribolium castaneum. Genetics 195, 253-261, 2013.
校內:2019-09-10公開