簡易檢索 / 詳目顯示

研究生: 劉瀚晟
Liu, Han-Cheng
論文名稱: 表面起始聚合親水性分子與抗菌劑鹵胺類修飾於聚氨酯薄膜之表面特性分析及其抗菌性評估
Surface modification of polyurethane membrane with hydrophilic monomer and N-halamine: surface characterization and antimicrobial properties evaluation
指導教授: 林睿哲
Lin, Jui-Che
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 103
中文關鍵詞: 聚氨酯表面改質抗菌劑鹵胺類親水性氯化效果殺菌性
外文關鍵詞: Polyurethane, Surface modification, N-halamine, Hydrophilic, Bactericidal properties
相關次數: 點閱:76下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於科技快速的發展及生活品質的提升,使得人們對健康的議題逐漸重視,在交通的進步下反而致使細菌傳播更加嚴峻,交叉感染的人數逐年上升,因此近年對於抗菌材料的需求相對提高。聚氨酯(Polyurethane)良好的機械性質與生物相容性,使得其在生醫材料方面擁有廣大的應用,但由於其表面呈現疏水性質,容易造成細菌的沾黏而造成傳遞的媒介,使得感染範圍因其擴大。
    本研究計畫合成一帶有雙鍵抗菌性單體,其屬鹵胺類型抗菌劑,擁有廣譜的抗菌能力與特殊的再生性質,後續透過表面起始聚合的方式賦予聚氨酯抗菌能力,另外聚合親水性單體,增加表面的親水性質,提高氯化能力也降低細菌的沾附程度,並探討接上不同親水性單體時所呈現的結果。透過高解析核磁共振光譜儀(NMR)、高解析電子能譜儀(XPS)、高解析場發射式掃描式電子顯微鏡(HR FE-SEM)、傅里葉轉換紅外光譜(ATR-FTIR)及靜態接觸角(WCA)分析改質表面型態、表面鍵結、表面元素組成、表面親疏水性,最後透過碘量法分析氯含量以及殺菌實驗:塗盤定量評估此材料抗菌能力。
    綜合各實驗結果分析確定於聚氨酯表面上改質成功,表面性質皆有明顯的變化,包括:表面的型態、鍵結的改變、元素組成的比例…等,且表面呈現親水性質,氯化後對於革蘭氏陽細菌與革蘭氏陰性菌都能達到良好的效果,成功製備出具有抗菌的聚氨酯薄膜。

    Polyurethane (PU) is a biopolymer that has been commonly used in biomedical application. However, its intrinsic hydrophobic surface suffering from bacteria adhesion is one of the crucial problems that limit its applications. Among the antimicrobial agents, extensive research on N-halamine has been reported in recent years due to their superior antimicrobial efficacy against a broad spectrum, long-term stability and rechargeable properties upon exposure to household bleach. Therefore, in this work, N-halamine was synthesized for surface modification of polyurethane to achieve antimicrobial application.
    In this work, a polymerizable N-halamine was synthesized and analyzed by NMR. Active functional groups were generated on PU substrates by atmospheric plasma treatment, to immobilize the initiator of surface-initiated atom transfer radical polymerization (SI-ATRP). Then, three kinds of hydrophilic polymer and N-halamine polymer were grafted on the PU substrates through sequential SI-ATRP. The surface characterization was analyzed by EDS, ATR-FTIR, WCA and XPS. After chlorination with chlorine bleach, the antimicrobial efficacies were evaluated against both Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) according to JIS Z 2801 method.
    Results showed that three kinds of hydrophilic polymer and N-halamine polymer were grafted on PU substrate successfully and improve the chlorination efficacy since wettability increase. All the N-halamine modified PU substrates caused more than 2 log CFU reduction of bacteria reduction, however, the ones without hydrophilic polymer showed less antimicrobial efficacy.

    摘要 I EXTENDED ABSTRACT II 誌謝 XX 目錄 XXII 圖目錄 XXVI 表目錄 XXX 第1章 緒論 1 第2章 文獻回顧 3 2-1 聚氨酯簡介 3 2-1-1聚氨酯發展與加工 3 2-1-2聚氨酯於各方面之應用 4 2-2 抗菌材料 6 2-2-1 抗菌材料的必要性 6 2-2-2 細菌與材料的交互作用 8 2-2-3 抗菌材料表面 12 2-3 抗菌聚氨酯合成 14 2-3-1 整體改質(Blending/ Blocking) 14 2-3-2 表面改質(Surface Modification) 16 2-4 接觸型抗菌 19 2-4-1 殼聚醣 19 2-4-2 四級銨鹽 21 2-4-3 雙電性單體 22 2-5 釋放型抗菌 25 2-5-1 銀離子 25 2-5-2 鹵胺類 27 2-6 表面起始自由基聚合 32 2-6-1 可控/活性自由基聚合簡介 33 2-6-2 原子轉移自由基聚合(ATRP) 36 2-6-3 表面原子轉移自由基聚合(SI-ATRP) 38 2-7 研究目的與動機 39 第3章 實驗藥品與儀器介紹 40 3-1 藥品清單 40 3-1-1 抗菌單體合成 40 3-1-2 聚氨酯薄膜製備 40 3-1-3 起始劑接枝 40 3-1-4 表面起始聚合 40 3-1-5 細菌實驗 41 3-2 實驗儀器 42 3-3 儀器原理與介紹 43 3-3-1 高解析核磁共振光譜儀(Nuclear Magnetic Resonance, NMR) 43 3-3-2 光學式靜態接觸角(Optical Static Contact Angle) 45 3-3-3 場發射掃描式電子顯微鏡(Field Emission Scanning Electron Microscope, FESEM) 46 3-3-4 鍍金機(Auto Fine Sputter) 47 3-3-5 高解析電子能譜儀(High Resolution X-ray Photoelectron Spectrometer, HRXPS)[76, 77] 48 第4章 實驗步驟 50 4-1 流程圖 50 4-2 抗菌劑單體合成 51 4-2-1 VBDMH反應流程 51 4-2-2 合成VBDMH [30, 78] 51 4-3 製備聚氨酯薄膜 52 4-3-1 反應流程 52 4-3-2 聚氨酯薄膜製備過程 52 4-4 起始劑固定於聚氨酯表面[72] 53 4-4-1 反應流程 53 4-4-2 起始劑接枝 53 4-5 聚氨酯表面聚合親水性單體 54 4-5-1 反應流程 54 4-5-2 接枝親水性單體 55 4-6 聚氨酯表面聚合抗菌劑單體 57 4-6-1 反應流程 57 4-6-2 接枝抗菌劑單體 57 4-7 表面特性分析 58 4-7-1 XPS 58 4-7-2 ATR FT-IR 58 4-7-3 靜態接觸角量測 58 4-8 鹵胺類氯化與碘量法標定實驗 59 4-9 細菌抗菌實驗(參照JIS Z 2801標準方法) 59 第5章 結果與討論 62 5-1 抗菌劑分子結構鑑定 62 5-2 表面特性分析 63 5-2-1 EDS 63 5-2-2 表面親疏水性測試 65 5-2-3 ATR-FTIR 68 5-2-4 XPS 70 5-2-5 表面特性及改質程度討論 84 5-3 表面型態 85 5-4 氯含量測試 89 5-5 抗菌能力測試 91 第6章 結論 93 參考文獻 94

    1. Flandroy, L., et al., The impact of human activities and lifestyles on the interlinked microbiota and health of humans and of ecosystems. Science of the total environment, 2018. 627: p. 1018-1038.
    2. Akindoyo, J.O., et al., Polyurethane types, synthesis and applications – a review. RSC Advances, 2016. 6(115): p. 114453-114482.
    3. Sharmin, E. and F. Zafar, Polyurethane: an introduction. Polyurethane, 2012: p. 3-16.
    4. Cooper, S.L. and J. Guan, Advances in polyurethane biomaterials. 2016: Woodhead Publishing.
    5. Sun, X., et al., An N-halamine-based rechargeable antimicrobial and biofilm controlling polyurethane. Acta Biomater, 2012. 8(4): p. 1498-506.
    6. Galbraith, M.C., A GLOBAL OVERVIEW OF THE THERMOPLASTIC POLYURETHANE (TPU) MARKET. JULY, 2013, IAL Consultants: UK.
    7. Zhang, H., Surface characterization techniques for polyurethane biomaterials, in Advances in Polyurethane Biomaterials. 2016. p. 23-73.
    8. Chen, R., et al., Design of polyurethane acrylic antimicrobial films via one-step UV curing. New Journal of Chemistry, 2017. 41(18): p. 9762-9768.
    9. Liu, K., et al., UV-curable enzymatic antibacterial waterborne polyurethane coating. Biochemical Engineering Journal, 2016. 113: p. 107-113.
    10. Qiao, M., et al., N-Halamine modified thermoplastic polyurethane with rechargeable antimicrobial function for food contact surface. RSC advances, 2017. 7(3): p. 1233-1240.
    11. Page, K., M. Wilson, and I.P. Parkin, Antimicrobial surfaces and their potential in reducing the role of the inanimate environment in the incidence of hospital-acquired infections. Journal of Materials Chemistry, 2009. 19(23).
    12. Wu, C.-Y., et al., Understanding the granulation process of activated sludge in a biological phosphorus removal sequencing batch reactor. Chemosphere, 2012. 86(8): p. 767-773.
    13. Kochkodan, V., et al., Adhesion of microorganisms to polymer membranes: a photobactericidal effect of surface treatment with TiO2. Desalination, 2008. 220(1-3): p. 380-385.
    14. Baumgarten, T., et al., Membrane vesicle formation as a multiple-stress response mechanism enhances Pseudomonas putida DOT-T1E cell surface hydrophobicity and biofilm formation. Appl. Environ. Microbiol., 2012. 78(17): p. 6217-6224.
    15. Krasowska, A. and K. Sigler, How microorganisms use hydrophobicity and what does this mean for human needs? Front Cell Infect Microbiol, 2014. 4: p. 112.
    16. Heipieper, H., S. Cornelissen, and M. Pepi, Surface properties and cellular energetics of bacteria in response to the presence of hydrocarbons. Handbook of hydrocarbon and lipid microbiology, 2010: p. 1615-1624.
    17. Fux, C., et al., Survival strategies of infectious biofilms. Trends in microbiology, 2005. 13(1): p. 34-40.
    18. Horswill, A.R., et al., The effect of the chemical, biological, and physical environment on quorum sensing in structured microbial communities. Analytical and bioanalytical chemistry, 2007. 387(2): p. 371-380.
    19. Davies, D., Understanding biofilm resistance to antibacterial agents. Nat Rev Drug Discov, 2003. 2(2): p. 114-22.
    20. Tanaka, M., G. Lima, and C.K. Ito, Biology of the oral environment and its impact on the stability of dental and craniofacial reconstructions, in Material-Tissue Interfacial Phenomena. 2017, Elsevier. p. 181-202.
    21. Larson, A.M. and A.M. Klibanov, Biocidal packaging for pharmaceuticals, foods, and other perishables. Annu Rev Chem Biomol Eng, 2013. 4: p. 171-86.
    22. Siedenbiedel, F. and J.C. Tiller, Antimicrobial Polymers in Solution and on Surfaces: Overview and Functional Principles. Polymers, 2012. 4(1): p. 46-71.
    23. Oh, Y.J., et al., Nanoscale Characteristics and Antimicrobial Properties of (SI-ATRP)-Seeded Polymer Brush Surfaces. ACS Appl Mater Interfaces, 2019. 11(32): p. 29312-29319.
    24. Fu, Y., et al., Mixed polymer brushes with integrated antibacterial and antifouling properties. Progress in Organic Coatings, 2019. 130: p. 75-82.
    25. Singha, P., J. Locklin, and H. Handa, A review of the recent advances in antimicrobial coatings for urinary catheters. Acta Biomater, 2017. 50: p. 20-40.
    26. Makal, U., et al., Polyurethane biocidal polymeric surface modifiers. Biomaterials, 2006. 27(8): p. 1316-26.
    27. Aydin, A., et al., Preparation of breathable polyurethane membranes with quaternary ammonium salt diols providing durable antibacterial property. Journal of Applied Polymer Science, 2018. 136(9).
    28. Coneski, P.N. and J.H. Wynne, Zwitterionic polyurethane hydrogels derived from carboxybetaine-functionalized diols. ACS Appl Mater Interfaces, 2012. 4(9): p. 4465-9.
    29. Demirci, F., K. Yildirim, and H.B. Kocer, Antimicrobial open-cell polyurethane foams with quaternary ammonium salts. Journal of Applied Polymer Science, 2018. 135(9).
    30. Xiu, K., et al., Controlling the Structure and Antimicrobial Function of N-Halamine-Based Polyurethane Semi-interpenetrating Polymer Networks. Industrial & Engineering Chemistry Research, 2017. 56(42): p. 12032-12037.
    31. Das, T., et al., A green technique to prepare uniform amine capped multi-walled carbon nanotubes to fabricate high strength, protein resistant polymer nanocomposites. RSC Advances, 2015. 5(20): p. 15524-15533.
    32. Alves, P., et al., Surface modification of a thermoplastic polyurethane by low-pressure plasma treatment to improve hydrophilicity. Journal of Applied Polymer Science, 2011. 122(4): p. 2302-2308.
    33. Slepickova Kasalkova, N., et al., Wettability and Other Surface Properties of Modified Polymers, in Wetting and Wettability. 2015.
    34. Luo, J., et al., Acyclic N-halamine-immobilized polyurethane: Preparation and antimicrobial and biofilm-controlling functions. J Bioact Compat Polym, 2015. 30(2): p. 157-166.
    35. Chu, X., et al., Synthesis and characterization of a novel antibacterial material containing poly(sulfobetaine) using reverse atom transfer radical polymerization. RSC Advances, 2018. 8(58): p. 33000-33009.
    36. Bahrami, N., et al., Low-pressure plasma surface modification of polyurethane films with chitosan and collagen biomolecules. Journal of Applied Polymer Science, 2019. 136(21).
    37. Yuan, G., X. Chen, and D. Li, Chitosan films and coatings containing essential oils: The antioxidant and antimicrobial activity, and application in food systems. Food Research International, 2016. 89: p. 117-128.
    38. Hosseinnejad, M. and S.M. Jafari, Evaluation of different factors affecting antimicrobial properties of chitosan. Int J Biol Macromol, 2016. 85: p. 467-75.
    39. Li, S., et al., Chitosans for Tissue Repair and Organ Three-Dimensional (3D) Bioprinting. Micromachines (Basel), 2019. 10(11).
    40. Xia, W., et al., Biological activities of chitosan and chitooligosaccharides. Food hydrocolloids, 2011. 25(2): p. 170-179.
    41. Xue, Y., H. Xiao, and Y. Zhang, Antimicrobial polymeric materials with quaternary ammonium and phosphonium salts. International journal of molecular sciences, 2015. 16(2): p. 3626-3655.
    42. Jennings, M.C., K.P. Minbiole, and W.M. Wuest, Quaternary Ammonium Compounds: An Antimicrobial Mainstay and Platform for Innovation to Address Bacterial Resistance. ACS Infect Dis, 2015. 1(7): p. 288-303.
    43. Denyer, S.P., Mechanisms of action of antibacterial biocides. International biodeterioration & biodegradation, 1995. 36(3-4): p. 227-245.
    44. Laschewsky, A., Structures and Synthesis of Zwitterionic Polymers. Polymers, 2014. 6(5): p. 1544-1601.
    45. He, M., et al., Zwitterionic materials for antifouling membrane surface construction. Acta Biomater, 2016. 40: p. 142-152.
    46. Li, L., et al., Protein adsorption on oligo (ethylene glycol)-terminated alkanethiolate self-assembled monolayers: the molecular basis for nonfouling behavior. The Journal of Physical Chemistry B, 2005. 109(7): p. 2934-2941.
    47. Smith, R.S., et al., Vascular catheters with a nonleaching poly-sulfobetaine surface modification reduce thrombus formation and microbial attachment. Sci Transl Med, 2012. 4(153): p. 153ra132.
    48. Burd, A., et al., A comparative study of the cytotoxicity of silver‐based dressings in monolayer cell, tissue explant, and animal models. Wound repair and regeneration, 2007. 15(1): p. 94-104.
    49. Le Ouay, B. and F. Stellacci, Antibacterial activity of silver nanoparticles: A surface science insight. Nano Today, 2015. 10(3): p. 339-354.
    50. Chernousova, S. and M. Epple, Silver as antibacterial agent: ion, nanoparticle, and metal. Angew Chem Int Ed Engl, 2013. 52(6): p. 1636-53.
    51. Duran, N., et al., Silver nanoparticles: A new view on mechanistic aspects on antimicrobial activity. Nanomedicine, 2016. 12(3): p. 789-799.
    52. Feng, Q.L., et al., A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. Journal of biomedical materials research, 2000. 52(4): p. 662-668.
    53. Zhang, X., et al., Silver/waterborne polyurethane-acrylate’s antibacterial coating on cotton fabric based on click reaction via ultraviolet radiation. Progress in Organic Coatings, 2018. 120: p. 10-18.
    54. Akdag, A., et al., The stabilities of N− Cl bonds in biocidal materials. Journal of Chemical Theory and Computation, 2006. 2(3): p. 879-884.
    55. Sun, X., et al., Amine, Melamine, and Amide N-Halamines as Antimicrobial Additives for Polymers. Ind Eng Chem Res, 2010. 49(22): p. 11206-11213.
    56. Kocer, H.B., Synthesis, Structure-Bioactivity Relationship, and Application of Antimicrobial Materials. 2009.
    57. Cerkez, I., et al., N-halamine copolymers for biocidal coatings. Reactive and Functional Polymers, 2012. 72(10): p. 673-679.
    58. Mauger, R.P. and F. Soper, 18. Acid catalysis in the formation of chloroamides from hypochlorous acid. N-chlorination by hypochlorite ions and by acyl hypochlorites. Journal of the Chemical Society (Resumed), 1946: p. 71-75.
    59. Sakic, D., et al., Chlorination of N-methylacetamide and amide-containing pharmaceuticals. Quantum-chemical study of the reaction mechanism. The Journal of Physical Chemistry A, 2014. 118(12): p. 2367-2376.
    60. Kocer, H.B., et al., A novel N-halamine acrylamide monomer and its copolymers for antimicrobial coatings. Reactive and Functional Polymers, 2011. 71(5): p. 561-568.
    61. Ren, X., et al., Antimicrobial coating of an N-halamine biocidal monomer on cotton fibers via admicellar polymerization. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2008. 317(1-3): p. 711-716.
    62. Dong, A., et al., Preparation of magnetically separable N-halamine nanocomposites for the improved antibacterial application. J Colloid Interface Sci, 2011. 364(2): p. 333-40.
    63. Bousquet, A., et al., Conjugated-polymer grafting on inorganic and organic substrates: A new trend in organic electronic materials. Progress in Polymer Science, 2014. 39(11): p. 1847-1877.
    64. Macchione, M.A., C. Biglione, and M. Strumia, Design, Synthesis and Architectures of Hybrid Nanomaterials for Therapy and Diagnosis Applications. Polymers (Basel), 2018. 10(5).
    65. Ulman, A., Formation and structure of self-assembled monolayers. Chemical reviews, 1996. 96(4): p. 1533-1554.
    66. Barbey, R., et al., Polymer brushes via surface-initiated controlled radical polymerization: synthesis, characterization, properties, and applications. Chemical reviews, 2009. 109(11): p. 5437-5527.
    67. Zoppe, J.O., et al., Surface-Initiated Controlled Radical Polymerization: State-of-the-Art, Opportunities, and Challenges in Surface and Interface Engineering with Polymer Brushes. Chem Rev, 2017. 117(3): p. 1105-1318.
    68. Quinn, J.F., et al., The application of ionizing radiation in reversible addition–fragmentation chain transfer (RAFT) polymerization: Renaissance of a key synthetic and kinetic tool. Polymer, 2007. 48(22): p. 6467-6480.
    69. He, W., et al., Atom transfer radical polymerization of hydrophilic monomers and its applications. Polymer Chemistry, 2013. 4(10).
    70. Coessens, V., et al., Functionalization of polymers prepared by ATRP using radical addition reactions. Macromolecular rapid communications, 2000. 21(2): p. 103-109.
    71. Choi, J., et al., N-chloro hydantoin functionalized polyurethane fibers toward protective cloth against chemical warfare agents. Polymer, 2018. 138: p. 146-155.
    72. Liu, P., et al., Zwitterionic modification of polyurethane membranes for enhancing the anti-fouling property. J Colloid Interface Sci, 2016. 480: p. 91-101.
    73. Khan, M., et al., Surface tailoring for selective endothelialization and platelet inhibition via a combination of SI-ATRP and click chemistry using Cys-Ala-Gly-peptide. Acta Biomater, 2015. 20: p. 69-81.
    74. Wade, L.G. and J.W.SImek, Organic Chemistry (9th Edition) Pearson College Div. 2016.
    75. Marturi, N., Vision and visual servoing for nanomanipulation and nanocharacterization in scanning electron microscope. 2013.
    76. Seah, M.P. and D. Briggs, Practical Surface Analysis: Auger and X-ray Photoelectron Spectroscopy. 1990: John Wiley & Sons.
    77. Ratner, B.D. and D.G. Castner, Electron spectroscopy for chemical analysis. Surface analysis: the principal techniques, 2009. 2.
    78. Sun, Y. and G. Sun, Durable and refreshable polymeric N‐halamine biocides containing 3‐(4′‐vinylbenzyl)‐5, 5‐dimethylhydantoin. Journal of Polymer Science Part A: Polymer Chemistry, 2001. 39(19): p. 3348-3355.
    79. Yuan, W., et al., Hemocompatible surface of electrospun nanofibrous scaffolds by ATRP modification. Mater Sci Eng C Mater Biol Appl, 2013. 33(7): p. 3644-51.
    80. Brown, A.A., et al., Synthesis of oligo(ethylene glycol) methacrylate polymer brushes. European Polymer Journal, 2005. 41(8): p. 1757-1765.
    81. Surman, F., et al., Polymer brushes interfacing blood as a route toward high performance blood contacting devices. Macromol Biosci, 2015. 15(5): p. 636-46.
    82. Dai, J., et al., A novel Nafion-g-PSBMA membrane prepared by grafting zwitterionic SBMA onto Nafion via SI-ATRP for vanadium redox flow battery application. Journal of Membrane Science, 2018. 554: p. 324-330.
    83. Beamson, G., High resolution XPS of organic polymers. The Scienta ESCA 300 Database, 1992.
    84. Hirsch, U., et al., Antifouling coatings via plasma polymerization and atom transfer radical polymerization on thin film composite membranes for reverse osmosis. Applied Surface Science, 2018. 436: p. 207-216.
    85. Yang, W.J., et al., Stainless steel surfaces with thiol-terminated hyperbranched polymers for functionalization via thiol-based chemistry. Polymer Chemistry, 2013. 4(10).
    86. Patil, S.H., et al., To form layer by layer composite film in view of its application as supercapacitor electrode by exploiting the techniques of thin films formation just around the corner. Electrochimica Acta, 2018. 265: p. 556-568.
    87. Tastet, D., et al., Functional biohybrid materials synthesized via surface-initiated MADIX/RAFT polymerization from renewable natural wood fiber: Grafting of polymer as non leaching preservative. Polymer, 2011. 52(3): p. 606-616.
    88. Ejaz, M., et al., Controlled graft polymerization of methyl methacrylate on silicon substrate by the combined use of the langmuir− blodgett and atom transfer radical polymerization techniques. Macromolecules, 1998. 31(17): p. 5934-5936.
    89. Chang, D., et al., N-Halamine polymer from bipolymer to amphiphilic terpolymer with enhancement in antibacterial activity. Colloids Surf B Biointerfaces, 2018. 163: p. 402-411.
    90. Liu, J., et al., Synthesis of a Novel N-halamine-based Cyclic Polysiloxane and Its Antibacterial Application on Cotton Fabrics. Fibers and Polymers, 2020. 21(2): p. 273-281.

    無法下載圖示 校內:2025-07-25公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE