| 研究生: |
方茂禎 Fang, Mao-Chen |
|---|---|
| 論文名稱: |
台灣玉里帶火成岩及變質岩之同位素研究:整合性綜述與其在地體構造演化上之意涵 Isotopic Studies of Igneous and Metamorphic Rocks in the Yuli Belt, Taiwan: An Integrative Review and Its Implications for Tectonic Evolution |
| 指導教授: |
申永輝
Shen, Yun-Hwei |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 資源工程學系 Department of Resources Engineering |
| 論文出版年: | 2026 |
| 畢業學年度: | 114 |
| 語文別: | 中文 |
| 論文頁數: | 129 |
| 中文關鍵詞: | 玉里帶 、同位素地球化學 、穿時性增積 、鋯石U-Pb定年 、鎦-鉿同位素 、高壓變質 、弧陸碰撞 |
| 外文關鍵詞: | Yuli Belt, zircon U-Pb geochronology, Lu-Hf isotopes, arc-continent collision, tectonic mélange |
| 相關次數: | 點閱:6 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
玉里帶位於台灣中央山脈與海岸山脈之間,係台灣造山帶中唯一的高壓低溫(HP-LT)變質帶。傳統研究將其歸屬為中生代白堊紀產物,然而近年高精度鋯石鈾鉛定年資料顯示,其應為中新世增積稜柱,紀錄南中國海板塊隱沒及隨後弧陸碰撞演化之過程。本研究透過整合性文獻分析與統計,彙整玉里帶北、中、南段(緯度23.0°N–24.0°N)鋯石U-Pb年代學及鋯石鎦-鉿同位素資料,探討兩項主要科學問題:(1)玉里帶是否呈現造山運動南移之規律性;(2)界定玉里帶之鋯石鎦-鉿同位素特徵之物源轉換與構造邊界。
主要成果包括四個方面:
其一,基質碎屑鋯石最大沉積年代(MDA)呈現南向變年輕規律,北段約25–28 Ma、中段約11 Ma、南段約11–17 Ma。線性迴歸分析(R² = 0.897)似乎表明造山運動前緣南移速率約10.7 km/Ma(1.1 cm/yr),低於現今板塊斜向遷移速率,可能反映碰撞初期造山前鋒遷移較緩,初步驗證台灣斜向碰撞模式。
其二,外來岩塊火成結晶年代全帶相近,均集中於15–17 Ma。鎦-鉿同位素呈較高正值(εHf(t) = +14至+30),與呂宋島弧特徵(+5至+13)存有差異,似反映其源自虧損地函,與南中國海洋殼來源較為相符。南、北段εHf(t)值之數值差異可能暗示源區複雜性,需進一步檢驗。
其三,多系統冷卻年代整合顯示玉里帶經歷約15Ma演化循環:(a)南中國海洋殼生成期(~15–17 Ma),由鋯石核心結晶年代代表;(b)隱沒-冷卻期(~12–9 Ma),由礦物Ar-Ar年代所示;(c)弧陸碰撞-快速折返期(<4 Ma),鋯石邊緣變質年代3.3 Ma標記碰撞期高壓流體改造,隨後快速抬升(3–6 mm/yr)。此框架協調了前人矛盾的年代資料。
其四,基質(負εHf,陸殼成分)與岩塊(正εHf,洋殼成分)之同位素二元特徵,似可支持玉里帶為典型構造混同層(Tectonic Mélange)之解釋,基質與岩塊源自不同構造環境,於隱沒過程中混合。
結論: 本研究傾向支持「中新世晚期增積、上新世碰撞抬升」之認識,相較於支持玉里帶為中生代古太平洋隱沒之傳統看法。此外,重新定位將台灣造山帶演化與南中國海張裂-閉合歷史相互關聯,可望為西太平洋弧陸碰撞動態與斜向碰撞機制提供整合性資訊。進一步研究倘能納入更多高精度同位素資料與變質相平衡分析,應可更精確量化隱沒深度、峰值變質條件與折返速率之時空變異。
The Yuli Belt represents Taiwan's sole high-pressure, low-temperature (HP-LT) metamorphic terrane. Although conventionally attributed to Cretaceous subduction, recent zircon U-Pb geochronology indicates it is a Miocene accretionary prism recording South China Sea subduction and arc-continent collision. This study integrates zircon U-Pb and Lu-Hf isotopic data from the northern, central, and southern segments (23.0°N–24.0°N) to address systematic orogen-front migration and Lu-Hf provenance signatures.
Four major findings emerge: First, detrital zircon maximum depositional ages (MDA) show systematic southward rejuvenation—northern segment ~25–28 Ma, central ~11 Ma, southern ~11–17 Ma. Linear regression (R² = 0.897) indicates a southward migration rate of ~10.7 km/Ma, lower than present-day plate convergence (8–9 cm/yr), suggesting deceleration during initial collision and preliminarily validating Taiwan's oblique collision model.Second, exotic blocks (metamorphosed ophiolite, gabbro, plagiogranite) yield crystallization ages of 15–17 Ma with elevated positive εHf(t) values (+14 to +30), contrasting with Luzon arc signatures (+5 to +13). This may indicate depleted mantle derivation consistent with South China Sea oceanic crust. Differences between southern and northern segments suggest source complexity warranting further investigation.
Third, integration of zircon U-Pb and ⁴⁰Ar/³⁹Ar ages reveals a ~15 million-year evolutionary cycle: oceanic lithosphere genesis (~15–17 Ma), subduction-cooling (12–9 Ma), and arc-continent collision with rapid exhumation (<4 Ma), marked by zircon rim ages of 3.3 Ma and uplift rates of 3–6 mm/yr.Fourth, the matrix exhibits negative εHf(t) values (TDM2 > 2.0 Ga) indicating Cathaysia Block components, while exotic blocks display positive Lu-Hf characteristics reflecting mantle sources. This isotopic dichotomy supports a classic tectonic mélange interpretation.The compiled data do not support Cretaceous Paleo-Pacific subduction. Instead, they indicate "late Miocene South China Sea accretion followed by Pliocene collision-driven exhumation." This repositions Taiwan's orogen evolution within South China Sea history, offering insights into western Pacific arc-continent collision mechanisms.
Blichert-Toft, J., & Albarède, F. (1997). The Lu-Hf isotope geochemistry of chondrites and the evolution of the mantle-crust system. Earth and Planetary Science Letters, 148(1-2), 243-258.
Byrne, T., Chan, Y.-C., Rau, R.-J., Lu, C.-Y., Lee, Y.-H., & Wang, Y.-J. (2011). The arc–continent collision in Taiwan. In Arc-continent collision (pp. 213-245). Springer.
Cawood, P. A., Hawkesworth, C., & Dhuime, B. (2012). Detrital zircon record and tectonic setting. Geology, 40(10), 875-878.
Chen, W. S., Chung, S. L., Chou, H. Y., Zugeerbai, Z., Shao, W. Y., & Lee, Y. H. (2017). A reinterpretation of the metamorphic Yuli belt: Evidence for a middle‐late Miocene accretionary prism in eastern Taiwan. Tectonics, 36(2), 188-206.
DeGraaff-Surpless, K., Mahoney, J. B., Wooden, J. L., & McWilliams, M. O. (2003). Lithofacies control in detrital zircon provenance studies: Insights from the Cretaceous Methow basin, southern Canadian Cordillera. Geological Society of America Bulletin, 115(8), 899-915.
Dewangga, D. D., Tsai, C.-H., Lee, H.-Y., Iizuka, Y., Chung, S.-L., & Chang, W.-Y. (2025). Element redistribution along the subduction interface: metasomatism between pelitic schist and ophiolitic serpentinite in the Yuli belt, eastern Taiwan. Lithos, 108280.
Dickinson, W. R., & Gehrels, G. E. (2009). Use of U–Pb ages of detrital zircons to infer maximum depositional ages of strata: a test against a Colorado Plateau Mesozoic database. Earth and Planetary Science Letters, 288(1-2), 115-125.
Gehrels, G. (2014). Detrital zircon U-Pb geochronology applied to tectonics. Annual Review of Earth and Planetary Sciences, 42(1), 127-149.
Griffin, W. L., Pearson, N. J., Belousova, E., Jackson, S. v., Van Achterbergh, E., O’Reilly, S. Y., & Shee, S. (2000). The Hf isotope composition of cratonic mantle: LAM-MC-ICPMS analysis of zircon megacrysts in kimberlites. Geochimica et cosmochimica acta, 64(1), 133-147.
Ho, C. S. (1986). A synthesis of the geologic evolution of Taiwan. Tectonophysics, 125(1), 1-16. https://doi.org/https://doi.org/10.1016/0040-1951(86)90004-1
Hoskin, P. W., & Schaltegger, U. (2003). The composition of zircon and igneous and metamorphic petrogenesis. Reviews in mineralogy and geochemistry, 53, 27-62.
Huang, C.-Y., Yuan, P. B., & Tsao, S.-J. (2006). Temporal and spatial records of active arc-continent collision in Taiwan: A synthesis. Geological Society of America Bulletin, 118(3-4), 274-288.
Huang, P. H., Wei, C., & Zhang, J. (2021). High‐P metamorphism of garnet–epidote–amphibole schists from the Yuli Belt, Eastern Taiwan: Evidence related to warm subduction. Journal of Metamorphic Geology, 39(6), 675-693.
Kemp, A., Hawkesworth, C. J., Paterson, B., & Kinny, P. (2006). Episodic growth of the Gondwana supercontinent from hafnium and oxygen isotopes in zircon. Nature, 439(7076), 580-583.
Keyser, W., Tsai, C.-H., Iizuka, Y., Oberhänsli, R., & Ernst, W. (2016). High-pressure metamorphism in the Chinshuichi area, Yuli belt, eastern Taiwan. Tectonophysics, 692, 191-202.
Lan, Q., Yan, Y., Huang, C.-Y., Santosh, M., Shan, Y.-H., Chen, W., Yu, M., & Qian, K. (2016). Topographic architecture and drainage reorganization in Southeast China: Zircon U-Pb chronology and Hf isotope evidence from Taiwan. Gondwana Research, 36, 376-389.
Lin-Gibson, S., & Choquette, C. S. J. (2022). REFERENCE MATERIAL INFORMATION SHEET.
LO, C.-H., Yui, T.-F., & Lo, C.-H. (1989). High-pressure metamorphosed ophiolitic rocks from the Wanjung area, Taiwan. Proceedings-Geological Society of China.
Lo, W.-H., Tsai, C.-H., Chung, S.-L., Li, X.-H., Li, Q.-L., Lee, H.-Y., Lee, C.-Y., & Iizuka, Y. (2022). Petrographic, geochemical, and geochronological characteristics of metaplagiogranites from a high-pressure mélange in the Yuli belt, eastern Taiwan: Evidence for an early Miocene igneous precursor. Lithos, 428-429, 106829. https://doi.org/https://doi.org/10.1016/j.lithos.2022.106829
Lo, Y.-C., Chih-Tung, C., Lo, C.-H., & Sun-Lin, C. (2020). Ages of ophiolitic rocks along plate suture in Taiwan orogen: Fate of the South China Sea from subduction to collision. TAO: Terrestrial, Atmospheric and Oceanic Sciences, 31(4), 3.
Patchett, P., & Tatsumoto, M. (1981). A routine high-precision method for Lu-Hf isotope geochemistry and chronology. Contributions to Mineralogy and Petrology, 75(3), 263-267.
Söderlund, U., Patchett, P. J., Vervoort, J. D., & Isachsen, C. E. (2004). The 176Lu decay constant determined by Lu–Hf and U–Pb isotope systematics of Precambrian mafic intrusions. Earth and Planetary Science Letters, 219(3), 311-324. https://doi.org/https://doi.org/10.1016/S0012-821X(04)00012-3
Sandmann, S., Nagel, T. J., Froitzheim, N., Ustaszewski, K., & Münker, C. (2015). Late Miocene to Early Pliocene blueschist from Taiwan and its exhumation via forearc extraction. Terra Nova, 27(4), 285-291.
Shao, W.-Y., Chung, S.-L., Chen, W.-S., Lee, H.-Y., & Xie, L.-W. (2015). Old continental zircons from a young oceanic arc, eastern Taiwan: Implications for Luzon subduction initiation and Asian accretionary orogeny. Geology, 43(6), 479-482.
Suppe, J. (1981). Mechanics of mountain building and metamorphism in Taiwan. Mem. Geol. Soc. China, 4, 67-89.
Suppe, J. (1984). Kinematics of arc-continent collision, flipping of subduction, and back-arc spreading near Taiwan. Geological Society of China Mem.
Teng, L. S. (1990). Geotectonic evolution of late Cenozoic arc-continent collision in Taiwan. Tectonophysics, 183(1-4), 57-76.
Wang, Y., Tsai, C.-H., Zhou, L., Qiu, Y., & Sun, G. (2017). Reassessment of the Mesozoic metasedimentary rocks and tectonic setting of Taiwan and the adjacent continental margin of eastern Asia. Geological Magazine, 154(5), 1127-1154.
Yui, T.-F., Usuki, T., Chen, C.-Y., Ishida, A., Sano, Y., Suga, K., Iizuka, Y., & Chen, C.-T. (2014). Dating thin zircon rims by NanoSIMS: the Fengtien nephrite (Taiwan) is the youngest jade on Earth. International Geology Review, 56(16), 1932-1944.
Yui, T. F., Okamoto, K., Usuki, T., Lan, C. Y., Chu, H. T., & Liou, J. G. (2009). Late Triassic–Late Cretaceous accretion/subduction in the Taiwan region along the eastern margin of South China – evidence from zircon SHRIMP dating. International Geology Review, 51(4), 304-328. https://doi.org/10.1080/00206810802636369
Zhang, Y., & Tsai, C.-H. (2020). The Yuli Belt in Taiwan: Part of the suture zone separating Eurasian and Philippine Sea plates. Terrestrial, Atmospheric & Oceanic Sciences, 31(4).
吴福元, 李献华, 郑永飞, & 高山. (2007). Lu-Hf 同位素体系及其岩石学应用. 岩石学报, 23(2), 185-220.
邵文佑. (2015). 利用鋯石鈾鉛定年與鉿同位素組成探討台灣東部火成岩之岩石成因 (Publication Number 2015年) 國立臺灣大學]. AiritiLibrary.
鄧嘉翔. (2013). 大南澳片岩鋯石的鈾鉛定年研究. 中正大學地球與環境科學系地震研究所學位論文, 1-147.
羅允杰. (2023). 台灣蛇綠岩同位素定年及其大地構造意義. 國立臺灣大學地質科學系學位論文, 1-176.