簡易檢索 / 詳目顯示

研究生: 方茂禎
Fang, Mao-Chen
論文名稱: 台灣玉里帶火成岩及變質岩之同位素研究:整合性綜述與其在地體構造演化上之意涵
Isotopic Studies of Igneous and Metamorphic Rocks in the Yuli Belt, Taiwan: An Integrative Review and Its Implications for Tectonic Evolution
指導教授: 申永輝
Shen, Yun-Hwei
學位類別: 碩士
Master
系所名稱: 工學院 - 資源工程學系
Department of Resources Engineering
論文出版年: 2026
畢業學年度: 114
語文別: 中文
論文頁數: 129
中文關鍵詞: 玉里帶同位素地球化學穿時性增積鋯石U-Pb定年鎦-鉿同位素高壓變質弧陸碰撞
外文關鍵詞: Yuli Belt, zircon U-Pb geochronology, Lu-Hf isotopes, arc-continent collision, tectonic mélange
相關次數: 點閱:6下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 玉里帶位於台灣中央山脈與海岸山脈之間,係台灣造山帶中唯一的高壓低溫(HP-LT)變質帶。傳統研究將其歸屬為中生代白堊紀產物,然而近年高精度鋯石鈾鉛定年資料顯示,其應為中新世增積稜柱,紀錄南中國海板塊隱沒及隨後弧陸碰撞演化之過程。本研究透過整合性文獻分析與統計,彙整玉里帶北、中、南段(緯度23.0°N–24.0°N)鋯石U-Pb年代學及鋯石鎦-鉿同位素資料,探討兩項主要科學問題:(1)玉里帶是否呈現造山運動南移之規律性;(2)界定玉里帶之鋯石鎦-鉿同位素特徵之物源轉換與構造邊界。
    主要成果包括四個方面:
    其一,基質碎屑鋯石最大沉積年代(MDA)呈現南向變年輕規律,北段約25–28 Ma、中段約11 Ma、南段約11–17 Ma。線性迴歸分析(R² = 0.897)似乎表明造山運動前緣南移速率約10.7 km/Ma(1.1 cm/yr),低於現今板塊斜向遷移速率,可能反映碰撞初期造山前鋒遷移較緩,初步驗證台灣斜向碰撞模式。
    其二,外來岩塊火成結晶年代全帶相近,均集中於15–17 Ma。鎦-鉿同位素呈較高正值(εHf(t) = +14至+30),與呂宋島弧特徵(+5至+13)存有差異,似反映其源自虧損地函,與南中國海洋殼來源較為相符。南、北段εHf(t)值之數值差異可能暗示源區複雜性,需進一步檢驗。
    其三,多系統冷卻年代整合顯示玉里帶經歷約15Ma演化循環:(a)南中國海洋殼生成期(~15–17 Ma),由鋯石核心結晶年代代表;(b)隱沒-冷卻期(~12–9 Ma),由礦物Ar-Ar年代所示;(c)弧陸碰撞-快速折返期(<4 Ma),鋯石邊緣變質年代3.3 Ma標記碰撞期高壓流體改造,隨後快速抬升(3–6 mm/yr)。此框架協調了前人矛盾的年代資料。
    其四,基質(負εHf,陸殼成分)與岩塊(正εHf,洋殼成分)之同位素二元特徵,似可支持玉里帶為典型構造混同層(Tectonic Mélange)之解釋,基質與岩塊源自不同構造環境,於隱沒過程中混合。
    結論: 本研究傾向支持「中新世晚期增積、上新世碰撞抬升」之認識,相較於支持玉里帶為中生代古太平洋隱沒之傳統看法。此外,重新定位將台灣造山帶演化與南中國海張裂-閉合歷史相互關聯,可望為西太平洋弧陸碰撞動態與斜向碰撞機制提供整合性資訊。進一步研究倘能納入更多高精度同位素資料與變質相平衡分析,應可更精確量化隱沒深度、峰值變質條件與折返速率之時空變異。

    The Yuli Belt represents Taiwan's sole high-pressure, low-temperature (HP-LT) metamorphic terrane. Although conventionally attributed to Cretaceous subduction, recent zircon U-Pb geochronology indicates it is a Miocene accretionary prism recording South China Sea subduction and arc-continent collision. This study integrates zircon U-Pb and Lu-Hf isotopic data from the northern, central, and southern segments (23.0°N–24.0°N) to address systematic orogen-front migration and Lu-Hf provenance signatures.
    Four major findings emerge: First, detrital zircon maximum depositional ages (MDA) show systematic southward rejuvenation—northern segment ~25–28 Ma, central ~11 Ma, southern ~11–17 Ma. Linear regression (R² = 0.897) indicates a southward migration rate of ~10.7 km/Ma, lower than present-day plate convergence (8–9 cm/yr), suggesting deceleration during initial collision and preliminarily validating Taiwan's oblique collision model.Second, exotic blocks (metamorphosed ophiolite, gabbro, plagiogranite) yield crystallization ages of 15–17 Ma with elevated positive εHf(t) values (+14 to +30), contrasting with Luzon arc signatures (+5 to +13). This may indicate depleted mantle derivation consistent with South China Sea oceanic crust. Differences between southern and northern segments suggest source complexity warranting further investigation.
    Third, integration of zircon U-Pb and ⁴⁰Ar/³⁹Ar ages reveals a ~15 million-year evolutionary cycle: oceanic lithosphere genesis (~15–17 Ma), subduction-cooling (12–9 Ma), and arc-continent collision with rapid exhumation (<4 Ma), marked by zircon rim ages of 3.3 Ma and uplift rates of 3–6 mm/yr.Fourth, the matrix exhibits negative εHf(t) values (TDM2 > 2.0 Ga) indicating Cathaysia Block components, while exotic blocks display positive Lu-Hf characteristics reflecting mantle sources. This isotopic dichotomy supports a classic tectonic mélange interpretation.The compiled data do not support Cretaceous Paleo-Pacific subduction. Instead, they indicate "late Miocene South China Sea accretion followed by Pliocene collision-driven exhumation." This repositions Taiwan's orogen evolution within South China Sea history, offering insights into western Pacific arc-continent collision mechanisms.

    目錄xvii 表目錄xix 圖目錄xx 第一章 緒論1 1.1 研究背景與構造格局1 1.1.1 台灣東部造山帶的分段結構與分層1 1.1.2 玉里帶:中新世增積稜柱的典型代表1 1.2 研究動機2 1.3 研究方案之選擇3 1.3.1 鋯石樣本與 U-Pb 定年之優勢3 1.3.2 鋯石 Lu-Hf 同位素分析之優勢3 1.3.3 具體研究計劃4 第二章:理論背景與概念框架6 2.1 地理範圍界定地質產狀與岩性描述6 2.1.1 北段:豐田與萬榮地區6 2.1.2 中段:瑞穗與紅葉溪地區6 2.1.3 南段:清水溪地區7 2.2 玉里帶構造演化模型之對比與研究現狀7 第三章:研究方法9 3.1 文獻檢索策略與數據篩選準則9 3.1.1 檢索來源與關鍵字設定9 3.1.2 文獻納入範疇與時間規律9 3.1.3 數據篩選準則與排除標準10 3.2 鋯石鈾鉛定年數據分析11 3.2.1 鋯石年齡數據統計與最大沉積年代(MDA)之界定方法11 3.2.2 碎屑基質(Matrix)最大沉積年代之判定11 3.2.3 外來岩塊(Exotic Blocks)火成結晶年代之整合12 3.2.4 現生河砂樣本之物源代表性與數據處理12 3.2.5 數據過濾標準與年齡選取標準13 3.3 鋯石鎦鉿同位素數據之選取標準與處理方法13 3.3.1 鋯石 Lu-Hf 同位素物源判別標準13 3.3.2 空間歸屬與採樣點位之二次確認14 3.3.3 同位素演化計算與參數標準化14 3.3.4 數據品質評估與誤差限定14 3.4 穿時性增積規律之造山運動南移速率計算15 3.4.1 原理與地質意義15 3.4.2 計算方法與理論基礎15 3.4.3 詳細計算過程16 第四章:分析結果19 4.1 鋯石數據之多維度分類標準與地質意義19 4.2 鋯石 U-Pb 數據篩選與統計概況19 4.2.1 碎屑基質與河砂:最大沉積年代 (MDA) 之緯度年齡趨勢20 4.2.2 外來岩塊之火成結晶年代20 4.3 變質環帶年代與熱演化紀錄23 4.4 鋯石鎦鉿同位素之地球化學來源特徵23 4.5 穿時性增積與造山運動南移26 第五章 討論30 5.1 穿時性增積規律的探討30 5.2 玉里帶與周邊地體之同位素地球化學對比:原岩來源與構造判定32 5.2.1 鉿同位素「成熟島弧來源」假說32 5.2.2 鋯石氧同位素揭示之高溫熱液蝕變背景33 5.2.3 年代頻譜的排他性分析33 5.3 熱演化與構造折返機制:多重定年系統之 P-T-t 路徑整合34 第六章 結論37 參考文獻39 附錄一 鋯石鈾鉛年齡原始數據42 附錄二 鋯石鎦鉿同位素原始數據105

    Blichert-Toft, J., & Albarède, F. (1997). The Lu-Hf isotope geochemistry of chondrites and the evolution of the mantle-crust system. Earth and Planetary Science Letters, 148(1-2), 243-258.
    Byrne, T., Chan, Y.-C., Rau, R.-J., Lu, C.-Y., Lee, Y.-H., & Wang, Y.-J. (2011). The arc–continent collision in Taiwan. In Arc-continent collision (pp. 213-245). Springer.
    Cawood, P. A., Hawkesworth, C., & Dhuime, B. (2012). Detrital zircon record and tectonic setting. Geology, 40(10), 875-878.
    Chen, W. S., Chung, S. L., Chou, H. Y., Zugeerbai, Z., Shao, W. Y., & Lee, Y. H. (2017). A reinterpretation of the metamorphic Yuli belt: Evidence for a middle‐late Miocene accretionary prism in eastern Taiwan. Tectonics, 36(2), 188-206.
    DeGraaff-Surpless, K., Mahoney, J. B., Wooden, J. L., & McWilliams, M. O. (2003). Lithofacies control in detrital zircon provenance studies: Insights from the Cretaceous Methow basin, southern Canadian Cordillera. Geological Society of America Bulletin, 115(8), 899-915.
    Dewangga, D. D., Tsai, C.-H., Lee, H.-Y., Iizuka, Y., Chung, S.-L., & Chang, W.-Y. (2025). Element redistribution along the subduction interface: metasomatism between pelitic schist and ophiolitic serpentinite in the Yuli belt, eastern Taiwan. Lithos, 108280.
    Dickinson, W. R., & Gehrels, G. E. (2009). Use of U–Pb ages of detrital zircons to infer maximum depositional ages of strata: a test against a Colorado Plateau Mesozoic database. Earth and Planetary Science Letters, 288(1-2), 115-125.
    Gehrels, G. (2014). Detrital zircon U-Pb geochronology applied to tectonics. Annual Review of Earth and Planetary Sciences, 42(1), 127-149.
    Griffin, W. L., Pearson, N. J., Belousova, E., Jackson, S. v., Van Achterbergh, E., O’Reilly, S. Y., & Shee, S. (2000). The Hf isotope composition of cratonic mantle: LAM-MC-ICPMS analysis of zircon megacrysts in kimberlites. Geochimica et cosmochimica acta, 64(1), 133-147.
    Ho, C. S. (1986). A synthesis of the geologic evolution of Taiwan. Tectonophysics, 125(1), 1-16. https://doi.org/https://doi.org/10.1016/0040-1951(86)90004-1
    Hoskin, P. W., & Schaltegger, U. (2003). The composition of zircon and igneous and metamorphic petrogenesis. Reviews in mineralogy and geochemistry, 53, 27-62.
    Huang, C.-Y., Yuan, P. B., & Tsao, S.-J. (2006). Temporal and spatial records of active arc-continent collision in Taiwan: A synthesis. Geological Society of America Bulletin, 118(3-4), 274-288.
    Huang, P. H., Wei, C., & Zhang, J. (2021). High‐P metamorphism of garnet–epidote–amphibole schists from the Yuli Belt, Eastern Taiwan: Evidence related to warm subduction. Journal of Metamorphic Geology, 39(6), 675-693.
    Kemp, A., Hawkesworth, C. J., Paterson, B., & Kinny, P. (2006). Episodic growth of the Gondwana supercontinent from hafnium and oxygen isotopes in zircon. Nature, 439(7076), 580-583.
    Keyser, W., Tsai, C.-H., Iizuka, Y., Oberhänsli, R., & Ernst, W. (2016). High-pressure metamorphism in the Chinshuichi area, Yuli belt, eastern Taiwan. Tectonophysics, 692, 191-202.
    Lan, Q., Yan, Y., Huang, C.-Y., Santosh, M., Shan, Y.-H., Chen, W., Yu, M., & Qian, K. (2016). Topographic architecture and drainage reorganization in Southeast China: Zircon U-Pb chronology and Hf isotope evidence from Taiwan. Gondwana Research, 36, 376-389.
    Lin-Gibson, S., & Choquette, C. S. J. (2022). REFERENCE MATERIAL INFORMATION SHEET.
    LO, C.-H., Yui, T.-F., & Lo, C.-H. (1989). High-pressure metamorphosed ophiolitic rocks from the Wanjung area, Taiwan. Proceedings-Geological Society of China.
    Lo, W.-H., Tsai, C.-H., Chung, S.-L., Li, X.-H., Li, Q.-L., Lee, H.-Y., Lee, C.-Y., & Iizuka, Y. (2022). Petrographic, geochemical, and geochronological characteristics of metaplagiogranites from a high-pressure mélange in the Yuli belt, eastern Taiwan: Evidence for an early Miocene igneous precursor. Lithos, 428-429, 106829. https://doi.org/https://doi.org/10.1016/j.lithos.2022.106829
    Lo, Y.-C., Chih-Tung, C., Lo, C.-H., & Sun-Lin, C. (2020). Ages of ophiolitic rocks along plate suture in Taiwan orogen: Fate of the South China Sea from subduction to collision. TAO: Terrestrial, Atmospheric and Oceanic Sciences, 31(4), 3.
    Patchett, P., & Tatsumoto, M. (1981). A routine high-precision method for Lu-Hf isotope geochemistry and chronology. Contributions to Mineralogy and Petrology, 75(3), 263-267.
    Söderlund, U., Patchett, P. J., Vervoort, J. D., & Isachsen, C. E. (2004). The 176Lu decay constant determined by Lu–Hf and U–Pb isotope systematics of Precambrian mafic intrusions. Earth and Planetary Science Letters, 219(3), 311-324. https://doi.org/https://doi.org/10.1016/S0012-821X(04)00012-3
    Sandmann, S., Nagel, T. J., Froitzheim, N., Ustaszewski, K., & Münker, C. (2015). Late Miocene to Early Pliocene blueschist from Taiwan and its exhumation via forearc extraction. Terra Nova, 27(4), 285-291.
    Shao, W.-Y., Chung, S.-L., Chen, W.-S., Lee, H.-Y., & Xie, L.-W. (2015). Old continental zircons from a young oceanic arc, eastern Taiwan: Implications for Luzon subduction initiation and Asian accretionary orogeny. Geology, 43(6), 479-482.
    Suppe, J. (1981). Mechanics of mountain building and metamorphism in Taiwan. Mem. Geol. Soc. China, 4, 67-89.
    Suppe, J. (1984). Kinematics of arc-continent collision, flipping of subduction, and back-arc spreading near Taiwan. Geological Society of China Mem.
    Teng, L. S. (1990). Geotectonic evolution of late Cenozoic arc-continent collision in Taiwan. Tectonophysics, 183(1-4), 57-76.
    Wang, Y., Tsai, C.-H., Zhou, L., Qiu, Y., & Sun, G. (2017). Reassessment of the Mesozoic metasedimentary rocks and tectonic setting of Taiwan and the adjacent continental margin of eastern Asia. Geological Magazine, 154(5), 1127-1154.
    Yui, T.-F., Usuki, T., Chen, C.-Y., Ishida, A., Sano, Y., Suga, K., Iizuka, Y., & Chen, C.-T. (2014). Dating thin zircon rims by NanoSIMS: the Fengtien nephrite (Taiwan) is the youngest jade on Earth. International Geology Review, 56(16), 1932-1944.
    Yui, T. F., Okamoto, K., Usuki, T., Lan, C. Y., Chu, H. T., & Liou, J. G. (2009). Late Triassic–Late Cretaceous accretion/subduction in the Taiwan region along the eastern margin of South China – evidence from zircon SHRIMP dating. International Geology Review, 51(4), 304-328. https://doi.org/10.1080/00206810802636369
    Zhang, Y., & Tsai, C.-H. (2020). The Yuli Belt in Taiwan: Part of the suture zone separating Eurasian and Philippine Sea plates. Terrestrial, Atmospheric & Oceanic Sciences, 31(4).
    吴福元, 李献华, 郑永飞, & 高山. (2007). Lu-Hf 同位素体系及其岩石学应用. 岩石学报, 23(2), 185-220.
    邵文佑. (2015). 利用鋯石鈾鉛定年與鉿同位素組成探討台灣東部火成岩之岩石成因 (Publication Number 2015年) 國立臺灣大學]. AiritiLibrary.
    鄧嘉翔. (2013). 大南澳片岩鋯石的鈾鉛定年研究. 中正大學地球與環境科學系地震研究所學位論文, 1-147.
    羅允杰. (2023). 台灣蛇綠岩同位素定年及其大地構造意義. 國立臺灣大學地質科學系學位論文, 1-176.

    QR CODE