| 研究生: |
曾俊凱 Tseng, Chun-Kai |
|---|---|
| 論文名稱: |
氮化鎵銦系列材料應用於再生能源-太陽能電池&光電化學水解氫氣元件之研究 InGaN-based Materials Applied to Photovoltaic & Photo-Electro-Chemical Devices |
| 指導教授: |
許進恭
Sheu, Jinn-Kong |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程研究所 Institute of Electro-Optical Science and Engineering |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 100 |
| 中文關鍵詞: | 氮化鎵銦 、太陽能電池 、光電化學 、氫氣 |
| 外文關鍵詞: | Photoelectrochemical, InGaN, Photovoltaic |
| 相關次數: | 點閱:57 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘要
本論文主要針對能夠轉換太陽光能量的再生能源元件作相關研究,利用三五族氮化鎵/氮化鎵銦(GaN/InGaN)材料製作光伏(photovoltaic, PV)元件與光電化學(photo-electro-chemical, PEC)水解出氫氣之元件。首先在PV元件的研究上,我們改變n型高摻雜層(n+-layer)的有效深度(teffn)與金屬電極分佈來縮短受光激發的載子在元件中的傳輸距離,藉此降低材料缺陷對元件特性的影響。轉換效率上,teffn為40 nm比起teffn 740 nm之元件減少了35%的光電流損耗;指叉狀電極分佈的光電流比起網狀電極高出30%。在SiO2光學薄膜的應用上,適當選擇的光學薄膜除了減少光反射(Fresnel reflection loss)外,元件表面形成的鈍化層亦減少半導體材料的表面復合速率,當元件本身表面缺陷較少的情況下對元件的開路電壓(VOC)有明顯提升,並且在轉換效率上有高達22%的提升。
PEC水解氫氣元件的研究上,我們設計不同金屬電極密度,改變電場在半導體內的延伸,降低受光激發載子在傳輸過程被復合的比例,且為了避免金屬電極參與光電化學反應而剝落,以SiO2薄膜做為金屬的保護層,使用的光源為300 W的氙燈、電解液為一個莫耳濃度之氯化鈉(NaCl : 1 mol/L)。比較光電化學反應的產氣速率,網狀金屬電極分佈比起直接藉由n+-GaN傳輸載子的元件高出72%,而且在外加1V參考偏壓時氣體反應速率更有161%的提升效果。
Abstract
InGaN-based photovoltaic (PV) devices with GaN/InGaN superlattice absorption layers epitaxially grown on sapphire substrates by metal-organic vapor phase epitaxy techniques are performed to reach band edge absorption at around 445 nm. The stacked superlattice structures with barrier and well layers form a miniband with lower bandgap energy instead of thick InGaN junctions with high indium compositions. PV devices designed with different structures and post-treatment are performed to alleviate the loss in photovoltaic effects of the InGaN-based absorption layers. In this study, shorter effective thickness of n+-layer (teffn ~ 40 nm) for PV-A reduces 35% in photo-generated current loss as compared with that of PV-B (teffn ~ 740 nm). On the other hand, the conversion efficiency of the devices with electrodes in digitated arrangement is improved by around 30% as compared to that of PV devices with electrodes in grid arrangement. In addition, SiO2 antireflection layers applied to the PV devices could effectively reduce the reflection of incident light and reduce surface recombination of surface states. As a result, the overall conversion efficiency is enhanced by approximately 22%.
Hydrogen generation by direct photoelectrolysis of aqueous solutions was also studied by using n+-GaN films to serve as working electrodes. To enhance the photocurrent, i.e., gas generation rate, meshed Cr/Au contacts on the n+-type GaN films with SiO2 protection layers were immersed in the NaCl electrolyte. The meshed Cr/Au contacts could effectively reduce the transit time of photogenerated electrons before they reach the Cr/Au Ohmic contacts while the SiO2 protection layers could isolate the Ohmic contacts from electrolyte. We designed two different n+-type GaN photoelectrodes. One is the n+-type GaN photoelectrode with Ohmic contacts in grid arrangement and SiO2 protection layers deposited on the Ohmic contacts (labeled as PEC2). For comparison, the carrier collection was directly extracted to the external circuit by working n+-GaN electrodes without the grid Ohmic contacts (labeled as PEC1). Under zero bias, the gas generation rate of PEC2 is enhanced by approximately 72% as compared to PEC1. The high generation rate could be attributed to the fact that the electrons generated by the light irradiation on the n-GaN working electrodes might recombine with holes or other material defects before they reach to the electrodes (i.e., external circuits) if the diffusion length of the electrons is shorter than the distance from the the n+-type GaN photoelectrode to the Ohmic contact. When a reference bias of 1V (compared with Pt electrodes) was applied to the n+-GaN working electrodes (PEC1 and PEC2), the generation rate was increased to 161% .
第一章 參考資料
【1】楊智喬, ”三五族太陽能電池製作與分析Fabrications and Characteristics of Group III/V Solar Cells”, 國立成功大學光電科學與工程研究所成功大學碩士論文, 2007.
【2】C.E. Thomas, B.D. James Jr. and F.D. Lomax, “Market penetration scenarios for fuel cell vehicles”, Int. J. Hydrogen Energy ,vol.23, pp. 949–966, October 1998.
【3】許進恭, ”氮化物半導體高效率全波段太陽能電池及太陽能光電解氫氣生成元件之研究”, 國科會計畫 NSC 93-2215-E-006-036, 2008.
【4】J.F Muth, J.H. Lee, I.K. Shmagin, R.M. Kolbas, H.C. Casey, Jr., B.P. Keller, U.K. Mishra, S.P. DenBaars, “Absorption coefficient, energy gap, exciton binding energy, and recombination lifetime of GaN obtained from transmission measurements”, Appl. Phys. Letter., vol. 71, no. 18, pp. 2572-2574, November 1997.
【5】J. Wu, W. Walukiewicz, K. M. Yu, J. W. Ager, III, E. E. Haller, H. Lu, W.J. Schaff, Y. Saito, and Y. Nanishi, “Unusual properties of the fundamental band gap of InN,” Appl. Phys. Letter., vol. 80, no. 21, pp. 3967–3969, May 2002
【6】O.Jani, I.Ferguson, C.Honsberg, and S.Kurtz, “Design and characterization of GaN/InGaN solar cells,” Appl. Phys. Lett., vol. 91, no. 13, pp. 132 117-1–132 117-3, Sep. 2007.
【7】S. X. Li, K. M. Yu, J. Wu, R. E. Jones, W. Walukiewicz, J. W. Ager, III, E. E. Haller, H. Lu, and W. J. Schaff, “Fermi-level stabilization energy in group III nitrides,” Phys. Rev. B, Condens. Matter, vol. 71, no. 16, pp. 161 201-1–161 201-4, Apr. 2005.
【8】A. Balcioglu, R. K. Ahrenkiel, and D. J. Friedman, “Effects of oxygen contamination on diffusion length in p+-n GaInNAs solar cells,” J. Appl. Phys., vol. 93, no. 6, pp. 3635–3642, Mar. 2003.
【9】K. Fujii and K. Ohkawa, “Hydrogen generation from aqueous water using n-GaN by photoassisted electrolysis”, phys. Stat. sol. (c), vol. 3, no. 6, pp. 2270-2273, July 2005.
【10】杜尚儒, “透明導電模沉積於矽基板之異質接面太陽能電池研究 Transparent Conducting Oxide Deposited on Silicon Wafer for Fabrication of Heterojunction Solar Cell“, 國立成功大學光電科學與工程研究所碩士論文, 2008.
第二章 參考文獻
【1】楊智喬, “三五族太陽能電池製作與分析Fabrications and Characteristics of Group III/V Solar Cells”, 國立成功大學光電科學與工程研究所碩士論文, 2007.
【2】American Society for Testing and Materials (ASTM) Terrestrial Reference Spectra for Photovoltaic Performance Evaluation, Reference AM1.5 Spectra, 1999.
【3】 “Standard Test Method for Electrical Performance of Photovoltaic Cells Using Reference Cells Under Simulated Sunlight”, American Society for Testing and Materials Committee, E948-950 ,1995.
【4】紀國鍾, 蘇炎坤, ”光電半導體技術手冊”, 台灣電子材料與元件協會出版, 2002.
【5】S. M. Sze, “Physics of Semiconductor Devices”,Third edition, 2000.
【6】杜尚儒, “透明導電模沉積於矽基板之異質接面太陽能電池研究 Transparent Conducting Oxide Deposited on Silicon Wafer for Fabrication of Heterojunction Solar Cell“, 國立成功大學光電科學與工程研究所成功大學碩士論文, 2008.
【7】J. Nelson, “Physics of Solar Cells”, World Scientific Publishing Co. Pte. Ltd,2003.
【8】D. A. Neamen, “Semiconductor Physics & Devices, Third Edition”, 3/E, McGraw-Hill 2003.
【9】波利斯科夫 著,張天高 譯,“光電化學太陽能轉換” ,科學出版, 1994.
【10】K. Fujii, K. Ohkawa, “Photoelectrochemical Properties of p-Type GaN in Comparison with n-Type GaN”, Japanese Journal of Applied Physics, vol. 44, no. 28, pp.909–911, 2005.
【11】K. Fujii, T. Karasawa, K. Ohkawa, “Hydrogen Gas Generation by Splitting Aqueous Water sing n-Type GaN Photoelectrode with Anodic Oxidation” Japanese Journal of Applied Physics, vol. 44, no. 18, pp. 543– 545, 2005.
【12】K. Fujii, K. Ohkawa, “Bias-Assisted H2 Gas Generation in HCl and KOH Solutions Using n-Type GaN Photoelectrode” Journal of The Electrochemical Society, vol. 153, no. 3, pp.468-471, January 2006.
【13】K. Fujii, K. Ohkawa, “Hydrogen Generation from Aqueous Water Using n-GaN by Photoassisted Electrolysis” phys. stat. sol. (c), vol. 3, No. 6, pp. 2270–2273, July 2005.
【14】l. f. Halbleiterphysik, J. K. U. Linz, “infrared spectroscopy and transport of electrons in semiconductor superlattices” IOPscience, Semicond, Sci.Technol, vol. 10, pp.557-575. Printed in the UK, 1995
【15】許進恭, ”氮化物半導體高效率全波段太陽能電池及太陽能光電解氫氣生成元件之研究”, 國科會計畫 NSC 93-2215-E-006-036, 2008.
第三章 參考資料
【1】N. A. El-Masry, E. L. Piner, S. X. Liu, and S.M. Bedair, “Phase separation in InGaN grown by metalorganic chemical vapor deposition,” Appl. Phys. Letter. vol. 72, no. 1, pp. 40–42, January 1998.
【2】J.K. Sheu, C.C Yang, S.J. Tu, K.H. Chang, M.L. Lee, W.C. Lai, and L.C. Peng, “Demonstration of GaN-Based Solar Cells With GaN/InGaN Superlattice Absorption Layers,” IEEE Electron Device Letter , vol. 30, no. 3, pp.225-227, March 2009.
第四章 參考資料
【1】J.K. Sheu, C.C. Yang, S.J. Tu, K.H. Chang, M.L. Lee, W.C. Lai, and L.C Peng, “Demonstration of GaN-Based Solar Cells With GaN/InGaN Superlattice Absorption Layers”, IEEE Electron Device Letter, vol. 30, no. 3, pp.225-227, March 2009.
【2】M. L. Lee, J. K. Sheu, C. C. Hu, “Nonalloyed Cr/Au-based Ohmic contacts to n-GaN”, Appl. Phys. Letter. vol. 91, pp. 182106-1- 182106-3, October 2007.
【3】C. H. Henry, “Limiting efficiencies of ideal single and multiple energy gap terrestrial solar cells”, J. Appl. Phys. Letter. vol. 51, no. 8, pp. 4494-4500, August 1980.
【4】A. Bensaoula and C. Boney, “Investigation of III-Nitride Materials for Space-Based Solar Cells” ISSO-UH/UHCL/NASA, 2005.
【5】T. Mukai and S. Nakamura, “Ultraviolet InGaN and GaN Single-Quantum-Well-Structure Light-Emitting Diodes Grown on Epitaxially Laterally Overgrown GaN Substrates”, Jpn. J. Appl. Phys. Letter. vol 38, pp. 5735-5739, 1999.
【6】Donald A. Neamen, “Semiconductor Physics &devices”, 3/E, McGraw-Hill 2003.
【7】M. T. Hirsch, J. A. Wolk, W. Walukiewicz, and E. E. Hallera “Persistent photoconductivity in n -type GaN”, Appl. Phys. Letter. vol. 71, no. 8, pp.1098-1100, August 1997.
第五章 參考資料
【1】S. Nakamura, “The Roles of Structural Imperfections in InGaN-Based Blue Light-Emitting Diodes and Laser Diodes”, Science vol. 281, pp. 956-961, 1998.
【2】V. M. Andreev, V. A. Grikhiles, V. D. Rumyanzev, “Photoelectric conversion of sun concentrated radiation”, Leningrad, Nauka, 1989.