| 研究生: |
盧信安 Lu, Hsin-An |
|---|---|
| 論文名稱: |
以高溫電紡絲法製備結晶性高分子纖維膜 Preparation of crystallizable polymer fibers via high temperature electrospinning |
| 指導教授: |
王紀
Wang, Chi |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 158 |
| 中文關鍵詞: | 電紡絲 |
| 外文關鍵詞: | electrospinning |
| 相關次數: | 點閱:48 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
許多結晶性高分子於常溫時無法溶解於一般溶劑,藉由高溫電紡裝置,可使溶液保持完全溶解的均勻態,進而製備出纖維膜。但於高溫的系統中,高分子溶液會因為溫降太大,使懸在針頭前端的液滴凝膠化,造成電紡不穩定,本研究利用遠紅外線加熱器,可提高電紡環境溫度,改善針端之阻塞,以達操作的目標。
利用高溫電紡sPS/oDCB溶液製備sPS纖維膜,其纖維直徑小於200nm,但液滴凝膠化仍使得電紡不穩定。為避免凝膠形成,使用高分子共混的方式,加入分子量為300k g/mol之aPS-H,改變sPS/aPS-H相對比例,降低sPS含量達到實驗需求,結果顯示還是無法穩定電紡製程。
本研究另對PHB溶液系統進行電紡實驗,選取室溫電紡絲可製備均勻纖維的PHB溶液濃度,提高溶液溫度可使黏度下降,因此可製備更細的纖維。於室溫下,6wt% PHB溶液利用電紡所得纖維直徑為2.04um,若將溶液溫度提高至41oC,纖維直徑降低至1.67um。另由12wt% PHB溶液於高溫電紡實驗中發現,纖維直徑可由室溫電紡之13.82um降至7.09um(41oC電紡),下降幅度為48.7%。研究中發現,提高溶液溫度,jet length會縮短,所得纖維直徑會變細。
The objective of this study is to develop a high-temperature electrospinning apparatus applicable to the semi-crystalline polymers, which are not readily dissolved in common solvents at room temperature. At present, we successfully set up a jacket-type heating device with an IR emitter to maintain the electrospinning solutions at high temperatures for prohibiting the polymer precipitation during process due to the possible temperature drop.
By high-temperature electrospinning of the sPS/oDCB solution, sPS nano-fibers were prepared. However, the process was unstable due to the gel formation. In order to lower the temperature of gel formation, we electrospun the sPS/aPS-H blend solution with various ratios to improve the electrospinnability. But a stable processing condition was hand to reach.
In addition, we also testified the high-temperature electrospinning apparatus by using the PHB solutions. For the 6wt% PHB solution, the fiber diameter was 2.04um by room-temperature elecrospinning process. When the solution temperature was increased to 41oC, the electrospun fiber diameter was decreased to 1.67um. For the 12wt% solution, the as-spun fiber diameter was via range from 13.82 to 7.09um, depending upon electrospinning temperature. This study confirmed that fiber diameter and jet length could be reduced by increasing solution temperature.
[1] 林坤賢, 以電紡絲法製備PBO纖維, 國立成功大學碩士論文, (2005).
[2] 林健樺, 以電紡絲法製備聚苯乙烯纖維膜, 國立成功大學碩士論文, (2004).
[3] 洪崇豪, 以電紡絲法製備彈性奈米SBS纖維膜, 國立成功大學碩士論文, (2004).
[4] J. Hao and X. Deng, “Semi-interpenetrating networks of bacterialpoly(3-hydroxybutyrate) with net-poly(ethylene glycol)” Polymer, 42,4091 (2001).
[5] G. J. L. Griffin, "Chemistry and Technology of Biodegradable polymers" Blackie academic & professional(1994).
[6] P. J. Barham,; E. L. Otun,; P. A. Holmes, J. Mater. Sci.,19, 2781, (1984).
[7] H. Erhoogt,; B.A Ramsay,; B. D. Favis, Polymer, 35,5155 (1994).
[8] M. Lemoigne, Ann. Inst. Past, 39, 144 (1925).
[9] K. Sombatmankhong, N. Scanchavanakit, P. Pavasant, P. Supaphol, “Bone scaffolds from electrospun fiber mats of poly(3-hydroxybutyrate), poly(3-hydroxybutyrate-co-3-hydroxyvalerate) and their blend.” polymer, 48,1419 (2007).
[10] C. H. Rivard, C. Chaput, S. Rhalmi, A. Selmani, Ann Chir, 50, 651 (1996).
[11] B. Nebe, C. Forster, H. Pommerenke, G. Fulda, D. Behrend, U. Bernewski, Biomaterials, 22, 2425 (2001).
[12] L. M. W. K. Gunaratne, R.A. Shanks, G. Amarasinghe, “Thermal history effects on crystallization and melting of poly(3-hydroxybutyrate).” Thermochim. Acta 423,127 (2004).
[13] C. S. Ha, W. J. Cho, Prog. Polym. Sci. 27,759 (2002).
[14] T. Ikejima, Y. Inoue, “Crystallization behavior and environmental biodegradability of the blend films of poly(3-hydroxybutyric acid) with chitin and chitosan Carbohydrate.” polymers, 41, 351 (2000).
[15] H. Sato, R. Murakami, A. Padermshoke, F. Hirose, K. Senda, I. Noda and Y. Ozaki, “Infrared spectroscopy studies of CH…O hydrogenbondings and thermal behavior of biodegradable poly(hydroxyalkanoate).” Macromolecules, 37, 7203 (2004).
[16] T. Ikejima, Y. Inoue, “Crystallization behavior and environmental biodegradability of the blend films of poly(3-hydroxybutyric acid) with chitin and chitosan, Carbohydrate.” Polymer, 41,351 (2000).
[17] D. Ishii, W. Lee, K. Kasuya, T. Iwata,” Fine structure and enzymatic degradation of poly[(R)-3-hydroxybutyrate] and stereocomplexed poly(lactide) nanofibers.” Journal of Biotechnology, 132, 318 (2007).
[18] M. Cheng, C. Lin, H. Su, P. Chen, Y. Sun, “Processing and
characterization of electrospun poly(3-hydroxybutyrate-co-3-hydro-
xyhexanoate) nanofibrous membranes” Polymer, 49, 546 (2008).
[19] K. Sombatmankhong, O. Suwantong, S. Waleetorncheepsawat, P. Supaphol, “Electrospun fiber mats of poly(3-hydroxybutyrate), poly(3-hydroxybutyrate-co-3-hydroxyvalerate), and their blends” J. Polym. Sci. Part B: Polymer Physics, 44,2923 (2006).
[20] I. S. Lee, O.H. Kwon, W. Meng, I.K. Kang, Y. Ito, Macromol Res. 12, 374 (2004).
[21] Y. Ito, H. Hasuda, M. Kamitakahara, C. Ohtsuki, M. Tanihara, I. K. Kang, J Biosci Bioeng ,100, 43 (2005).
[22] G. M. Kim, G. H. Michler, S. Henning, H. J. Radusch, A. Wutzler, “Thermal and spectroscopic characterization of microbial poly(3-hydroxybutyrate) submicrometer fibers prepared by electrospinning.” J. Appl. Polym.Sci., 103, 1860 (2007).
[23] J. Natta, “Une nouvelle classe de polymeres d’-olefines ayantune
rkgularité de structure exceptionnelle” J. Polym. Sci., 16, 143 (1955).
[24] N. Ishihara, T. Seimiya, M. Kuramoto and M. Uoi, “Crystalline syndiotactic polystyrene” Macromolecules, 19, 2464 (1986).
[25] 吳中仁, “s-PS之特性與應用”, 化工資訊, 12 (1996)
[26] 劉士榮, 高分子流變學, 滄海 (2005)
[27] O. Gries, Y. Xu, T. Asano and J. Petermann, “Morphology and structure of syndiotactic polystyrene” Polymer, 30, 590 (1989).
[28] C. De Rosa, G. Guerra, V. Petraccone and P. Corradini, “Crystal structure of the -form of syndiotactic polystyrene”, Polym. J., 23, 1435 (1991).
[29] Y. Chatani, Y. Fujii, Y. Shimane and T. Ijitsu, Polym. Prepr. Jpn. (Engl. Ed.), 37, E428 (1988).
[30] C. De Rosa, M. Rapacciuolo, G. Guerra, V. Petraccone and P. Corradini, “On the crystal structure of the orthorhombic form of syndiotactic polystyrene” Polymer, 33, 1423 (1992).
[31] C. De Rosa, G. Guerra and P. Corradini, Rend. Fis. Acc. Lincei, 2, 227 (1991).
[32] A. M. Evans, E. J. C. Kellar, J. Knowles, C . Galiotis, C. J.Carriere and E. H. Andrews, “The structure and morphology of syndiotactic
polystyrene injection molded coupons” Polym. Eng. Sci., 37, 153 (1997).
[33] S. Rastogi, J. G. P. Goossens and P. J. Lemstra, “An in situ
SAXS/WAXS/Raman spectroscopy study on the phase behavior of
syndiotactic polystyrene (sPS)/solvent systems: compound formation and solvent (dis)ordering” Macromolecules, 31, 2983 (1998).
[34] G. Guerra, V. M. Vitagliano, C. De Rosa, V. Petraccone and P. Corradini, “Polymorphism in melt crystallized syndiotactic polystyrene samples” Macromolecules, 23, 1539 (1990).
[35] H. D. Wu, I. D. Wu and F. C. Chang, “Characterization of crystallization in syndiotactic polystyrene thin film samples” Macromolecules, 33, 8915 (2000).
[36] H. D. Wu, S. C. Wu, I. D. Wu and F. C. Chang, “Novel determination of the crystallinity of syndiotactic polystyrene using FTIR spectrum” Polymer, 42, 4719 (2001).
[37] M. Kobayashi', T. Nakaoki, “Molecular conformation in glasses and gels of syndiotactic and isotactic polystyrenes” Macromolecules , 23, 78-83 (1990).
[38] H. Itagaki , J. Mochizuki, “Size and distribution of free volume in thermoreversible gels of syndiotactic polystyrene” Macromolecules , 38, 9625-9630 (2005).
[39] H. Shimizu, T. Wakayama, R. Wada, M. Okabe, F. Tanaka, “Solvent effect on junction size in syndiotactic polystyrene physical gel.” Polymer Journal, 37, 4, 294-298 (2005).
[40] C. Wang, C. H. Hsu, J. H. Lin, “Scaling laws in electrospinning of polystyrene solutions.” Macromolecules, 39, 7662 (2006).
[41] D. Li, Y. Xia, “Fabrication of titania nanofibers by electrospinning.” Nano Letters, 3, 555 (2003).
[42] J. M. Deitzel, J. Kleinmeyer, D. Harris, N. C. B. Tan, “The effect of processing variables on the morphology of electrospun nanofibers and textiles.” Polymer, 42, 261 (2001).
[43] H. Fong, I. Chun, D. H. Reneker, “Beaded nanofibers formed during electrospinning.” Polymer, 40, 4585 (1999).
[44] H. Liu, Y. L. Hsieh, “Ultrafine fibros cellulose membranes from electrospinninug of cellulose acetate” J. Polym. Sci., Part:B, Polym. Phys. , 40, 2119 (2001).
[45] X. Zong, K. Kim, D. Fang, S. Ran, B. S. Hsiao, B. Chu, “Structure and process relationship of electrospun bioabsorbable nanofiber membranes” Polymer, 43, 4403 (2002).
[46] K. H. Lee, H. Y. Kim, H. J. Bang, Y. H. Jung, S. G. Lee, “The change of bead morphology formed on electrospun polystyrene fibers”, Polymer, 44, 4029 (2003).
[47] D. H. Reneker, A. L. Yarin, H. Fong, S. Koombhongse, “Bending instability of electrospinning of nanofibers.” J. Appl. Phys., 87, 4531, (2000).
[48] S. Koombhongse, W. Liu, D. H. Reneker, “Flat polymer ribbons and other shapes by electrospinning” J. Polym. Sci., B, Polym. Phys. Ed., 39, 2598 (2001).
[49] S. Magelski, J. S. Stephens, D. B. Chase, J. F. Rabolt, “Micro- and nanostructured surface morphology on electrospun polymer fibers” Macromolecules ,35, 8456 (2002).
[50] K. H. Lee, H. Y. Kim, Y. J. Ryu, K. W. Kim, S. W. Choi, “Mechanical behavior of electrospun fiber mats of poly(vinyl chloride)/polyurethane polyblends” J. Polym. Sci., B, Polym. Phys. Ed. ,41, 1256(2003).
[51] K. H. Lee, H. Y. Kim, Y. M. LA, D. R. Lee, N. H. Sung, “Influence of a mixing solvent with tetrahydrofuran and n,n-dimethylformamide on electrospun poly(vinyl chloride) nonwoven mats” J. Polym. Sci., B, Polym. Phys. Ed. ,40, 2259 (2002).
[52] M. S. N. Oliveira and G. H. McKinley, “Iterated stretching and multiple beads-on-a-string phenomena in dilute solutions of highly extensible flexible polymers”, PHYSICS OF FLUIDS , 17, 071704 (2005).
[53] C. Wang, H. S. Chien, C. H. Hsu, Y. C. Wang, C. T. Wang, H. A. Lu, “Elctropsinning of polyacrylonitrile solution at elevated temperature” Macromolecules ,40, 7973 (2007).
[54] S. R. Givens, K. H. Gardner,†J. F. Rabolt, D. B. Chase, “High-temperature electrospinning of polyethylene microfibers from solution” Macromolecules ,40, 608 (2007).
[55] D. M. Rein, L. S. Hadar, R. L. Khalfin, Y. Cohen, K. Shuster, E. Zussman, “Electrospinning of ultrahigh-molecular-weight polyethylene nanofibers” J. Polym. Sci., B, Polym. Phys. Ed, 45, 766 (2007).
[56] S. Tripatanasuwan, Z. Zhong, D. H. Reneker, “Effect of evaporation and solidification of the charged jet in electrospinning of poly(ethylene oxide) aqueous solution” Polymer, 48, 5742 (2007).
[57] 徐嘉鴻, 以電紡絲法製備生物可分解性聚羫基丁酸酯纖維膜, 國立成功大學碩士論文, (2007)