簡易檢索 / 詳目顯示

研究生: 盧信安
Lu, Hsin-An
論文名稱: 以高溫電紡絲法製備結晶性高分子纖維膜
Preparation of crystallizable polymer fibers via high temperature electrospinning
指導教授: 王紀
Wang, Chi
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 158
中文關鍵詞: 電紡絲
外文關鍵詞: electrospinning
相關次數: 點閱:48下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 許多結晶性高分子於常溫時無法溶解於一般溶劑,藉由高溫電紡裝置,可使溶液保持完全溶解的均勻態,進而製備出纖維膜。但於高溫的系統中,高分子溶液會因為溫降太大,使懸在針頭前端的液滴凝膠化,造成電紡不穩定,本研究利用遠紅外線加熱器,可提高電紡環境溫度,改善針端之阻塞,以達操作的目標。

    利用高溫電紡sPS/oDCB溶液製備sPS纖維膜,其纖維直徑小於200nm,但液滴凝膠化仍使得電紡不穩定。為避免凝膠形成,使用高分子共混的方式,加入分子量為300k g/mol之aPS-H,改變sPS/aPS-H相對比例,降低sPS含量達到實驗需求,結果顯示還是無法穩定電紡製程。

    本研究另對PHB溶液系統進行電紡實驗,選取室溫電紡絲可製備均勻纖維的PHB溶液濃度,提高溶液溫度可使黏度下降,因此可製備更細的纖維。於室溫下,6wt% PHB溶液利用電紡所得纖維直徑為2.04um,若將溶液溫度提高至41oC,纖維直徑降低至1.67um。另由12wt% PHB溶液於高溫電紡實驗中發現,纖維直徑可由室溫電紡之13.82um降至7.09um(41oC電紡),下降幅度為48.7%。研究中發現,提高溶液溫度,jet length會縮短,所得纖維直徑會變細。

    The objective of this study is to develop a high-temperature electrospinning apparatus applicable to the semi-crystalline polymers, which are not readily dissolved in common solvents at room temperature. At present, we successfully set up a jacket-type heating device with an IR emitter to maintain the electrospinning solutions at high temperatures for prohibiting the polymer precipitation during process due to the possible temperature drop.

    By high-temperature electrospinning of the sPS/oDCB solution, sPS nano-fibers were prepared. However, the process was unstable due to the gel formation. In order to lower the temperature of gel formation, we electrospun the sPS/aPS-H blend solution with various ratios to improve the electrospinnability. But a stable processing condition was hand to reach.

    In addition, we also testified the high-temperature electrospinning apparatus by using the PHB solutions. For the 6wt% PHB solution, the fiber diameter was 2.04um by room-temperature elecrospinning process. When the solution temperature was increased to 41oC, the electrospun fiber diameter was decreased to 1.67um. For the 12wt% solution, the as-spun fiber diameter was via range from 13.82 to 7.09um, depending upon electrospinning temperature. This study confirmed that fiber diameter and jet length could be reduced by increasing solution temperature.

    摘要…………………………………………………………………. i Abstract……………………………………………………………… ii 致謝…………………………………………………………………. iii 目錄…………………………………………………………………. iv 表目錄………………………………………………………………. vii 圖目錄………………………………………………………………. ix 符號…………………………………………………………………. xiii 一、 前言……………………………………………………… 1 二、 簡介…………………………………………………….... 2 2.1 電紡絲模式……………………………………... 2 2.2 電紡絲實驗之觀察……………………………... 3 2.2.1 cone和jet之形態………………………… 3 2.2.2 Jet甩動之過程……………………………. 3 2.2.3 纖維之形態………………………………. 3 三、 文獻回顧…………………………………………............ 8 3.1 聚羥基丁酸酯(poly-3-hydroxybutyrate , PHB)簡介………................................................................ 8 3.1.1 PHB介紹………………………….............. 8 3.1.2 PHB性質……………………….................. 9 3.2 聚苯乙烯(polystyrene , PS)簡介………………... 12 3.2.1 PS介紹…………………………………….. 12 3.2.2對排聚苯乙烯…………………………….. 13 3.3 sPS凝膠(gel)……………………………………. 15 3.4 影響電紡絲的相關因素………………………… 16 3.5 結晶性高分子纖維製備與研究………………… 20 四、 理論…………………………………………………........ 72 4.1 高分子黏彈性…………………………………… 72 4.2 纖維雙折射率差量測…………………………… 74 五、 實驗……………………………………………………… 75 5.1 實驗藥品………………………………………… 75 5.2 實驗材料及儀器………………………………… 76 5.2.1量測溶液性質之儀器……………………... 76 5.2.2 電紡絲儀器及材料……………………….. 76 5.2.3 光學儀器………………………………….. 77 5.3 溶液製備………………………………………… 78 5.4 電紡絲之實驗流程圖…………………………… 79 5.5 CF飽和蒸汽的產生…………………………….. 80 5.6 電紡絲實驗步驟………………………………… 80 六、 結果與討論……………………………………………… 81 6.1 高溫電紡絲設備裝置…………………………… 81 6.1.1 油浴溫度控制…………………………….. 81 6.1.2 遠紅外線加熱器控制…………………….. 81 6.2 以高溫電紡sPS纖維與遭遇的困難…………… 83 6.2.1 sPS高溫電紡絲…………………………… 83 6.2.2凝膠形成溫度……………………………... 84 6.2.3 sPS溶入chloroform的情形………………. 85 6.3 以高溫電紡sPS/aPS-H複合纖維與遭遇的困難………………………………………………… 86 6.4 以高溫電紡製備sPS/aPS-U複合纖維與遭遇的困難……………………………………………… 87 6.5 PHB溶液性質…………………………………... 89 6.5.1溫度對黏度的影響………………………... 89 6.5.1.1流變儀測試……………………….. 89 6.5.1.2流變儀測試所遭遇之困難……….. 90 6.5.1.3 Brookfield黏度計測試…………… 90 6.5.2溫度對導電度的影響……………………... 91 6.5.3溫度對表面張力的影響…………………... 91 6.6 溫度對電紡絲製程的影響……………………… 92 6.6.1 PHB/CF+DMF系統電紡可操作範圍……. 92 6.6.2 固定濃度於不同溫度下的電紡絲結果….. 92 6.6.3 不同濃度於不同溫度下的電紡絲結果….. 92 七、 結論……………………………………………………… 151 八、 參考文獻………………………………………………… 152 九、 自述……………………………………………………… 158

    [1] 林坤賢, 以電紡絲法製備PBO纖維, 國立成功大學碩士論文, (2005).
    [2] 林健樺, 以電紡絲法製備聚苯乙烯纖維膜, 國立成功大學碩士論文, (2004).
    [3] 洪崇豪, 以電紡絲法製備彈性奈米SBS纖維膜, 國立成功大學碩士論文, (2004).
    [4] J. Hao and X. Deng, “Semi-interpenetrating networks of bacterialpoly(3-hydroxybutyrate) with net-poly(ethylene glycol)” Polymer, 42,4091 (2001).
    [5] G. J. L. Griffin, "Chemistry and Technology of Biodegradable polymers" Blackie academic & professional(1994).
    [6] P. J. Barham,; E. L. Otun,; P. A. Holmes, J. Mater. Sci.,19, 2781, (1984).
    [7] H. Erhoogt,; B.A Ramsay,; B. D. Favis, Polymer, 35,5155 (1994).
    [8] M. Lemoigne, Ann. Inst. Past, 39, 144 (1925).
    [9] K. Sombatmankhong, N. Scanchavanakit, P. Pavasant, P. Supaphol, “Bone scaffolds from electrospun fiber mats of poly(3-hydroxybutyrate), poly(3-hydroxybutyrate-co-3-hydroxyvalerate) and their blend.” polymer, 48,1419 (2007).
    [10] C. H. Rivard, C. Chaput, S. Rhalmi, A. Selmani, Ann Chir, 50, 651 (1996).
    [11] B. Nebe, C. Forster, H. Pommerenke, G. Fulda, D. Behrend, U. Bernewski, Biomaterials, 22, 2425 (2001).
    [12] L. M. W. K. Gunaratne, R.A. Shanks, G. Amarasinghe, “Thermal history effects on crystallization and melting of poly(3-hydroxybutyrate).” Thermochim. Acta 423,127 (2004).
    [13] C. S. Ha, W. J. Cho, Prog. Polym. Sci. 27,759 (2002).
    [14] T. Ikejima, Y. Inoue, “Crystallization behavior and environmental biodegradability of the blend films of poly(3-hydroxybutyric acid) with chitin and chitosan Carbohydrate.” polymers, 41, 351 (2000).
    [15] H. Sato, R. Murakami, A. Padermshoke, F. Hirose, K. Senda, I. Noda and Y. Ozaki, “Infrared spectroscopy studies of CH…O hydrogenbondings and thermal behavior of biodegradable poly(hydroxyalkanoate).” Macromolecules, 37, 7203 (2004).
    [16] T. Ikejima, Y. Inoue, “Crystallization behavior and environmental biodegradability of the blend films of poly(3-hydroxybutyric acid) with chitin and chitosan, Carbohydrate.” Polymer, 41,351 (2000).
    [17] D. Ishii, W. Lee, K. Kasuya, T. Iwata,” Fine structure and enzymatic degradation of poly[(R)-3-hydroxybutyrate] and stereocomplexed poly(lactide) nanofibers.” Journal of Biotechnology, 132, 318 (2007).
    [18] M. Cheng, C. Lin, H. Su, P. Chen, Y. Sun, “Processing and
    characterization of electrospun poly(3-hydroxybutyrate-co-3-hydro-
    xyhexanoate) nanofibrous membranes” Polymer, 49, 546 (2008).
    [19] K. Sombatmankhong, O. Suwantong, S. Waleetorncheepsawat, P. Supaphol, “Electrospun fiber mats of poly(3-hydroxybutyrate), poly(3-hydroxybutyrate-co-3-hydroxyvalerate), and their blends” J. Polym. Sci. Part B: Polymer Physics, 44,2923 (2006).
    [20] I. S. Lee, O.H. Kwon, W. Meng, I.K. Kang, Y. Ito, Macromol Res. 12, 374 (2004).
    [21] Y. Ito, H. Hasuda, M. Kamitakahara, C. Ohtsuki, M. Tanihara, I. K. Kang, J Biosci Bioeng ,100, 43 (2005).
    [22] G. M. Kim, G. H. Michler, S. Henning, H. J. Radusch, A. Wutzler, “Thermal and spectroscopic characterization of microbial poly(3-hydroxybutyrate) submicrometer fibers prepared by electrospinning.” J. Appl. Polym.Sci., 103, 1860 (2007).
    [23] J. Natta, “Une nouvelle classe de polymeres d’-olefines ayantune
    rkgularité de structure exceptionnelle” J. Polym. Sci., 16, 143 (1955).
    [24] N. Ishihara, T. Seimiya, M. Kuramoto and M. Uoi, “Crystalline syndiotactic polystyrene” Macromolecules, 19, 2464 (1986).
    [25] 吳中仁, “s-PS之特性與應用”, 化工資訊, 12 (1996)
    [26] 劉士榮, 高分子流變學, 滄海 (2005)
    [27] O. Gries, Y. Xu, T. Asano and J. Petermann, “Morphology and structure of syndiotactic polystyrene” Polymer, 30, 590 (1989).
    [28] C. De Rosa, G. Guerra, V. Petraccone and P. Corradini, “Crystal structure of the -form of syndiotactic polystyrene”, Polym. J., 23, 1435 (1991).
    [29] Y. Chatani, Y. Fujii, Y. Shimane and T. Ijitsu, Polym. Prepr. Jpn. (Engl. Ed.), 37, E428 (1988).
    [30] C. De Rosa, M. Rapacciuolo, G. Guerra, V. Petraccone and P. Corradini, “On the crystal structure of the orthorhombic form of syndiotactic polystyrene” Polymer, 33, 1423 (1992).
    [31] C. De Rosa, G. Guerra and P. Corradini, Rend. Fis. Acc. Lincei, 2, 227 (1991).
    [32] A. M. Evans, E. J. C. Kellar, J. Knowles, C . Galiotis, C. J.Carriere and E. H. Andrews, “The structure and morphology of syndiotactic
    polystyrene injection molded coupons” Polym. Eng. Sci., 37, 153 (1997).
    [33] S. Rastogi, J. G. P. Goossens and P. J. Lemstra, “An in situ
    SAXS/WAXS/Raman spectroscopy study on the phase behavior of
    syndiotactic polystyrene (sPS)/solvent systems: compound formation and solvent (dis)ordering” Macromolecules, 31, 2983 (1998).
    [34] G. Guerra, V. M. Vitagliano, C. De Rosa, V. Petraccone and P. Corradini, “Polymorphism in melt crystallized syndiotactic polystyrene samples” Macromolecules, 23, 1539 (1990).
    [35] H. D. Wu, I. D. Wu and F. C. Chang, “Characterization of crystallization in syndiotactic polystyrene thin film samples” Macromolecules, 33, 8915 (2000).
    [36] H. D. Wu, S. C. Wu, I. D. Wu and F. C. Chang, “Novel determination of the crystallinity of syndiotactic polystyrene using FTIR spectrum” Polymer, 42, 4719 (2001).
    [37] M. Kobayashi', T. Nakaoki, “Molecular conformation in glasses and gels of syndiotactic and isotactic polystyrenes” Macromolecules , 23, 78-83 (1990).
    [38] H. Itagaki , J. Mochizuki, “Size and distribution of free volume in thermoreversible gels of syndiotactic polystyrene” Macromolecules , 38, 9625-9630 (2005).
    [39] H. Shimizu, T. Wakayama, R. Wada, M. Okabe, F. Tanaka, “Solvent effect on junction size in syndiotactic polystyrene physical gel.” Polymer Journal, 37, 4, 294-298 (2005).
    [40] C. Wang, C. H. Hsu, J. H. Lin, “Scaling laws in electrospinning of polystyrene solutions.” Macromolecules, 39, 7662 (2006).
    [41] D. Li, Y. Xia, “Fabrication of titania nanofibers by electrospinning.” Nano Letters, 3, 555 (2003).
    [42] J. M. Deitzel, J. Kleinmeyer, D. Harris, N. C. B. Tan, “The effect of processing variables on the morphology of electrospun nanofibers and textiles.” Polymer, 42, 261 (2001).
    [43] H. Fong, I. Chun, D. H. Reneker, “Beaded nanofibers formed during electrospinning.” Polymer, 40, 4585 (1999).
    [44] H. Liu, Y. L. Hsieh, “Ultrafine fibros cellulose membranes from electrospinninug of cellulose acetate” J. Polym. Sci., Part:B, Polym. Phys. , 40, 2119 (2001).
    [45] X. Zong, K. Kim, D. Fang, S. Ran, B. S. Hsiao, B. Chu, “Structure and process relationship of electrospun bioabsorbable nanofiber membranes” Polymer, 43, 4403 (2002).
    [46] K. H. Lee, H. Y. Kim, H. J. Bang, Y. H. Jung, S. G. Lee, “The change of bead morphology formed on electrospun polystyrene fibers”, Polymer, 44, 4029 (2003).
    [47] D. H. Reneker, A. L. Yarin, H. Fong, S. Koombhongse, “Bending instability of electrospinning of nanofibers.” J. Appl. Phys., 87, 4531, (2000).
    [48] S. Koombhongse, W. Liu, D. H. Reneker, “Flat polymer ribbons and other shapes by electrospinning” J. Polym. Sci., B, Polym. Phys. Ed., 39, 2598 (2001).
    [49] S. Magelski, J. S. Stephens, D. B. Chase, J. F. Rabolt, “Micro- and nanostructured surface morphology on electrospun polymer fibers” Macromolecules ,35, 8456 (2002).
    [50] K. H. Lee, H. Y. Kim, Y. J. Ryu, K. W. Kim, S. W. Choi, “Mechanical behavior of electrospun fiber mats of poly(vinyl chloride)/polyurethane polyblends” J. Polym. Sci., B, Polym. Phys. Ed. ,41, 1256(2003).
    [51] K. H. Lee, H. Y. Kim, Y. M. LA, D. R. Lee, N. H. Sung, “Influence of a mixing solvent with tetrahydrofuran and n,n-dimethylformamide on electrospun poly(vinyl chloride) nonwoven mats” J. Polym. Sci., B, Polym. Phys. Ed. ,40, 2259 (2002).
    [52] M. S. N. Oliveira and G. H. McKinley, “Iterated stretching and multiple beads-on-a-string phenomena in dilute solutions of highly extensible flexible polymers”, PHYSICS OF FLUIDS , 17, 071704 (2005).
    [53] C. Wang, H. S. Chien, C. H. Hsu, Y. C. Wang, C. T. Wang, H. A. Lu, “Elctropsinning of polyacrylonitrile solution at elevated temperature” Macromolecules ,40, 7973 (2007).
    [54] S. R. Givens, K. H. Gardner,†J. F. Rabolt, D. B. Chase, “High-temperature electrospinning of polyethylene microfibers from solution” Macromolecules ,40, 608 (2007).
    [55] D. M. Rein, L. S. Hadar, R. L. Khalfin, Y. Cohen, K. Shuster, E. Zussman, “Electrospinning of ultrahigh-molecular-weight polyethylene nanofibers” J. Polym. Sci., B, Polym. Phys. Ed, 45, 766 (2007).
    [56] S. Tripatanasuwan, Z. Zhong, D. H. Reneker, “Effect of evaporation and solidification of the charged jet in electrospinning of poly(ethylene oxide) aqueous solution” Polymer, 48, 5742 (2007).
    [57] 徐嘉鴻, 以電紡絲法製備生物可分解性聚羫基丁酸酯纖維膜, 國立成功大學碩士論文, (2007)

    下載圖示 校內:2013-08-07公開
    校外:2013-08-07公開
    QR CODE