| 研究生: |
林冠伯 Lin, Kuan-Bo |
|---|---|
| 論文名稱: |
奈米電子與混成分子元件中量子傳輸的第一原理模擬 First-principles Modeling of Quantum Transport in Nanoelectronic and Hybrid Molecular Devices |
| 指導教授: |
蘇彥勳
Su, Yen-Hsun |
| 共同指導教授: |
關肇正
Kaun, Chao-Cheng |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 英文 |
| 論文頁數: | 235 |
| 中文關鍵詞: | 第一原理計算 、密度泛函理論 、非平衡格林函數 、量子傳輸 、負微分電阻 、奈米碳管 、銅線 、介電材料薄膜 、碲烯 、二硫化鉬 、接觸電阻 、二硫化鎢 、二維電晶體 |
| 外文關鍵詞: | first-principles calculation, density functional theory, quantum transport, negative differential resistance, carbon nanotube, copper interconnect, ultrathin dielectric, tellurene, molybdenum disulfide, contact resistance, tungsten disulfide, two-dimensional transistor |
| 相關次數: | 點閱:86 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
奈米電子與混成分子元件是當代資訊科技發展的重要基礎,其中,諸多新穎材料陸續被發現,特別是低維半導體材料受到廣大的關注,然而,傳統元件經驗公式和古典擴散理論已經無法準確解釋這類新穎材料在奈米尺度下的量子侷限效應與載子傳輸等特性,造成下一代量子積體電路設計上的困難,因此,使用基於第一原理計算來預測奈米材料量子行為是一種新興的理論模擬方法,本論文利用基於密度泛函理論與非平衡格林函數方法的第一原理計算,從原子級觀點建構模型,研究奈米電子與混成分子元件系統中的量子傳輸行為。我們預測由 Si(110) 基板與 C70/C60 奈米線組成的周期性混成分子元件中的負微分電阻特性,與實驗量測的結果相符。我們探討單壁奈米碳管與多烯烴分子橋接合所造成的分子元件中傳輸與電導之特性,我們發現量子干涉效應在分子電子元件傳輸上扮演重要角色。我們研究銅電極與二氧化矽薄膜中介面相依的電導與介電層的絕緣極限,我們發現不同氧原子濃度在介電層邊界上的變化,可有效影響漏電流數值與崩潰強度。我們研究數層二維碲烯的異向電導,我們的量子傳輸計算顯示沿著二維碲烯弱鍵結方向有高電導,與文獻計算的結果相符。我們探討二維過渡金屬二硫化物與不同種金屬電極的接觸電阻,通過計算不同的金屬電極 (金、鈦、銦、鋁、錫烯和銻烯) 與雙層二硫化鉬接面的量子傳輸,我們發現最低接觸電阻發生在銦金屬與二硫化鉬的頂接觸介面。最後,我們研究鎳電極邊緣接觸的單層二硫化鎢雙閘極電晶體的傳輸特性,在通道長二十奈米時,有極佳的元件特性,包括操作開關比大於十的十一次方個數量級、次臨界擺幅為 75 (mV/dec)、操作電壓下的接觸電阻為 191.5 (Ω·μm)。透過這些模擬計算,我們不僅可以深入瞭解奈米電子元件實驗中觀測到的現象,更可預測量子元件與電路的新穎特性,以期對量子科技的發展有所助益。
This dissertation presents computational analyses of quantum transport in nanoelectronic and hybrid molecular devices, using the first-principles modeling package, Nanodcal, based on density functional theory and nonequilibrium Green’s function technique. Our atomistic modeling allows us not only to understand the observed physical phenomenon but also to make precisely quantitative predictions for experiments. We predict the negative differential resistance characteristics of a single C70/C60 nanowires on the C60/Si(110) template, consisting with experimental data. We investigate the conduction properties of carbon nanotube (CNT)-polyene-CNT junctions, showing that the destructive interference can occur in such junctions and significantly affect their quantum transport. We study the interfacial-dependent leakage currents through the silicon-dioxide layer in between the copper electrodes, where the oxygen concentration at the interfaces is a key factor. We study the anisotropic conduction of few-layered tellurene and find that the highest anisotropic transport character occurs in two layers tellurene slab along the weak interlayer coupling direction. We investigate the contact resistances between bilayer molybdenum disulfide (MoS2) and different metals (gold, titanium, indium, aluminum, stanene, and antimonene), and find that the best contact occurs at the interface of indium and MoS2. Finally, we model the operating characteristics of a tungsten disulfide monolayer edge contacted with nickel electrodes as a dual-gate field effect transistor (FET) and find that such a FET with a channel length of 20 nm has ON/OFF ratio of 1011, subthreshold swing of 75 (mV/dec) and on-state contact resistance of 191.5 (Ω·μm). Through these calculations, we can not only gain in-depth understandings of the phenomena observed in the experiments of nanoelectronics, but also predict the novel properties of quantum devices and circuits, contributing to the development of quantum science and technology.
1 J. Galvez, IBM Research Alliance builds new transistor for 5 nm technology (2017).
2 E. Vogel, Technology and metrology of new electronic materials and devices. Nat. Nanotehnol. 2, 25-32, doi:10.1038/nnano.2006.142 (2007).
3 M. M. Waldrop, The chips are down for Moore’s law. Nature 530, 144-147, doi:10.1038/530144a (2016).
4 S. Salahuddin, et al. The era of hyper-scaling in electronics. Nat. Electron. 1, 442-450, doi:10.1038/s41928-018-0117-x (2018).
5 G. E. Moore in 1975 IEEE Int. Electron Devices Meet. 11-13 (1975).
6 A. J. Arnold, et al. Mimicking Neurotransmitter Release in Chemical Synapses via Hysteresis Engineering in MoS2 Transistors. ACS Nano 11, doi:10.1021/acsnano.7b00113 (2017).
7 G. E. Moore, Cramming More Components onto Integrated Circuits. Electronics 38, 114-117 (1965).
8 2021 IEEE International Roadmap for Devices and Systems (2021).
9 A. Fitch, and E. Koh, Chips are in hot demand - and that’s a problem. The Wall Street Journal (2021).
10 F. Schwierz, Graphene transistors. Nat. Nanotehnol. 5, 487-496, doi:10.1038/nnano.2010.89 (2010).
11 N. G. Orji, et al. Metrology for the next generation of semiconductor devices. Nat. Electron. 1, 532-547, doi:10.1038/s41928-018-0150-9 (2018).
12 D. Akinwande, et al. Graphene and two-dimensional materials for silicon technology. Nature 573, 507-518, doi:10.1038/s41586-019-1573-9 (2019).
13 S. Das, et al. Transistors based on two-dimensional materials for future integrated circuits. Nat. Electron. 4, 786-799, doi:10.1038/s41928-021-00670-1 (2021).
14 S. Thomas, An industry view on two-dimensional materials in electronics. Nat. Electron. 4, 856-857, doi:10.1038/s41928-021-00690-x (2021).
15 K. Zhu, et al. The development of integrated circuits based on two-dimensional materials. Nat. Electron. 4, 775-785, doi:10.1038/s41928-021-00672-z (2021).
16 J. Cartwright, Intel enters the third dimension. Nature, doi:10.1038/news.2011.274 (2011).
17 Samsung introduces world's first 3D V-NAND based SSD for enterprise applications (2013).
18 A. C. Seabaugh, and Q. Zhang, Low-Voltage Tunnel Transistors for Beyond CMOS Logic. Proc IEEE Inst Electr Electron Eng 98, 2095-2110, doi:10.1109/jproc.2010.2070470 (2010).
19 P. Zheng, et al. Simulation-Based Study of the Inserted-Oxide FinFET for Future Low-Power System-on-Chip Applications. IEEE Electron Device Lett 36, 742-744, doi:10.1109/LED.2015.2438856 (2015).
20 B. Sell, et al. in 2017 IEEE Int. Electron Devices Meet. 29.24.21-29.24.24 (2017).
21 A. Raychowdhury, MRAM and FinFETs team up. Nat. Electron. 1, 618-619, doi:10.1038/s41928-018-0182-1 (2018).
22 M.-L. Chen, et al. A FinFET with one atomic layer channel. Nat. Commun. 11, 1205, doi:10.1038/s41467-020-15096-0 (2020).
23 C. Varnava, FinFETs for cryptography. Nat. Electron. 3, 732-732, doi:10.1038/s41928-020-00521-5 (2020).
24 M. Hibben, TSMC, Not Intel, Has The Lead In Semiconductor Processes, https://seekingalpha.com/article/4151376-tsmc-not-intel-lead-in-semiconductor-processes (2018).
25 Y. Wang, et al. Schottky barrier heights in two-dimensional field-effect transistors: from theory to experiment. Rep. Prog. Phys. 84, doi:10.1088/1361-6633/abf1d4 (2021).
26 Intel CEO Pat Gelsinger announces ‘IDM 2.0’ strategy for manufacturing, innovation and product leadership., https://go.nature.com/3g4xsUP (2021).
27 P. Zheng, et al. FinFET Evolution Toward Stacked-Nanowire FET for CMOS Technology Scaling. IEEE Trans Electron Devices 62, 3945-3950, doi:10.1109/TED.2015.2487367 (2015).
28 S. Thomas, Nanosheet FETs at 3 nm. Nat. Electron. 1, 613-613, doi:10.1038/s41928-018-0179-9 (2018).
29 S. Thomas, Gate-all-around transistors stack up. Nat. Electron. 3, 728-728, doi:10.1038/s41928-020-00517-1 (2020).
30 C. Varnava, Seven levels high. Nat. Electron. 3, 354-354, doi:10.1038/s41928-020-0455-3 (2020).
31 S. Thomas, Germanium nanowire transistors stack up. Nat. Electron. 4, 452-452, doi:10.1038/s41928-021-00625-6 (2021).
32 B. Radisavljevic, et al. Single-layer MoS2 transistors. Nat. Nanotehnol. 6, doi:10.1038/nnano.2010.279 (2011).
33 A. Fowler, et al. Phys. Today 52, 104-105, doi:10.1063/1.882874 (1999).
34 R. Randauer, Spatial Variation of Currents and Fields Due to Localized Scatterers in Metallic Conduction. IBM Journal of Research and Development 1, 223-231, doi:10.1147/rd.13.0223 (1957).
35 A. D. Stone, and A. Szafer, What is measured when you measure a resistance?-The Landauer formula revisited. IBM Journal of Research and Development 32, 384-413, doi:10.1147/rd.323.0384 (1988).
36 H. van Houten, and C. Beenakker, Quantum Point Contacts. Phys. Today 49, 22-27, doi:10.1063/1.881503 (1996).
37 M. Buttiker, Symmetry of electrical conduction. IBM Journal of Research and Development 32, 317-334, doi:10.1147/rd.323.0317 (1988).
38 B. J. van Wees, et al. Quantized conductance of point contacts in a two-dimensional electron gas. Phys. Rev. Lett. 60, 848-850, doi:10.1103/PhysRevLett.60.848 (1988).
39 R. Randauer, Conductance determined by transmission: probes and quantised constriction resistance. J. Phys. Condens. Matter 1, 8099-8110 (1989).
40 C. Joachim, Molecular and intramolecular electronics. Superlattices Microstruct. 28, 305-315, doi: 10.1006/spmi.2000.0918 (2000).
41 H. Park, et al. Nanomechanical oscillations in a single-C60 transistor. Nature 407, 57-60, doi:10.1038/35024031 (2000).
42 F. Zahid, M. Paulsson, and S. Datta in Advanced Semiconductors and Organic Nano-Techniques (2003).
43 Y. Dubi, and M. Di Ventra, Colloquium: Heat flow and thermoelectricity in atomic and molecular junctions. Rev. Mod. Phys. 83, 131-155, doi:10.1103/RevModPhys.83.131 (2011).
44 B. Xu, and N.-J. Tao, Measurement of Single-Molecule Resistance by Repeated Formation of Molecular Junctions. Science 301, 1221-1223, doi:10.1126/science.1087481 (2003).
45 C.-C. Kaun and H. Guo, Resistance of Alkanethiol Molecular Wires. Nano Lett. 3, 1521-1525 (2003).
46 C.-C. Kaun, First-prineiples Study of Charge Transport in Moleeular Wires and Field Effect Devices Doctor of Philosophy thesis, McGill University, (2003).
47 B. Larade, Theory of molecular electronics Doctor of Philosophy thesis, McGill University, (2002).
48 K. Momma, and F. Izumi, VESTA: a three-dimensional visualization system for electronic and structural analysis. J Appl Crystallogr 41, 653-658, doi:doi:10.1107/S0021889808012016 (2008).
49 K. Momma, and F. Izumi, VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J Appl Crystallogr 44, 1272-1276, doi:doi:10.1107/S0021889811038970 (2011).
50 J. M. Soler, et al. The SIESTA method for ab initio order-N materials simulation. J. Phys. Condens. Matter 14, 2745-2779, doi:10.1088/0953-8984/14/11/302 (2002).
51 A. Garcia, et al. Siesta: Recent developments and applications. J. Chem. Phys. 152, 204108, doi:10.1063/5.0005077 (2020).
52 G. Kresse, M. Marsman, and J. Furthmuller, VASP the GUIDE (2018).
53 J. Taylor, H. Guo, and J. Wang, Ab initio modeling of quantum transport properties of molecular electronic devices. Phys. Rev. B 63, 245407, doi:10.1103/PhysRevB.63.245407 (2001).
54 J. Taylor, Ab-initio modelling of transport in atomic scale devices Doctor of Philosophy thesis, McGill University, (2000).
55 N. I. Bohr, On the constitution of atoms and molecules. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 26, 1-25, doi:10.1080/14786441308634955 (1913).
56 E. Schrödinger, An Undulatory Theory of the Mechanics of Atoms and Molecules. Phys. Rev. 28, 1049-1070, doi:10.1103/PhysRev.28.1049 (1926).
57 M. Born, and R. Oppenheimer, Zur Quantentheorie der Molekeln. Annalen der Physik 389, 457-484, doi: 10.1002/andp.19273892002 (1927).
58 D. R. Hartree, The Wave Mechanics of an Atom with a Non-Coulomb Central Field. Part II. Some Results and Discussion. Mathematical Proceedings of the Cambridge Philosophical Society 24, 111-132, doi:10.1017/S0305004100011920 (1928).
59 D. R. Hartree, The Wave Mechanics of an Atom with a Non-Coulomb Central Field. Part I. Theory and Methods. Mathematical Proceedings of the Cambridge Philosophical Society 24, 89-110, doi:10.1017/S0305004100011919 (1928).
60 D. R. Hartree, The Wave Mechanics of an Atom with a non-Coulomb Central Field. Part III. Term Values and Intensities in Series in Optical Spectra. Mathematical Proceedings of the Cambridge Philosophical Society 24, 426-437, doi:10.1017/S0305004100015954 (1928).
61 D. R. Hartree, and W. Hartree, Self-consistent field, with exchange, for beryllium. Proceedings of the Royal Society of London. Series A - Mathematical and Physical Sciences 150, 9-33, doi:doi:10.1098/rspa.1935.0085 (1935).
62 J. C. Slater, The Self Consistent Field and the Structure of Atoms. Phys. Rev. 32, 339-348, doi:10.1103/PhysRev.32.339 (1928).
63 J. C. Slater, Note on Hartree's Method. Phys. Rev. 35, 210-211, doi:10.1103/PhysRev.35.210.2 (1930).
64 L. H. Thomas, The calculation of atomic fields. Mathematical Proceedings of the Cambridge Philosophical Society 23, 542-548, doi:10.1017/S0305004100011683 (1927).
65 E. Fermi, Un Metodo Statistico per la Determinazione di alcune Prioprietà dell’Atomo. Endiconti: Accademia Nazionale dei Lincei. Mathematical Proceedings of the Cambridge Philosophical Society 6, 602-607 (1927).
66 P. Hohenberg and W. Kohn, Inhomogeneous Electron Gas. Phys. Rev. 136, B864-B871 (1964).
67 T.-R. Chang, Electronic Structure of Novel Materials. Doctor of Philosophy thesis, National Tsing Hua University, (2013).
68 W. Kohn, and L.-J. Sham, Self-Consistent Equation Including Exchange and Correlation Effects. Phys. Rev. 1965, A1133-A1138 (1965).
69 D. M. Ceperley, and B. J. Alder, Ground State of the Electron Gas by a Stochastic Method. Phys. Rev. Lett. 45, 566-569, doi:10.1103/PhysRevLett.45.566 (1980).
70 J. P. Perdew, K. Burke and M. Ernzerhof, Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 77, 3865-3868 (1996).
71 J. P. Perdew, K. Burke, and Y. Wang, Generalized gradient approximation for the exchange-correlation hole of a many-electron system. Phys. Rev. B 54, 16533-16539 (1996).
72 D. R. Hamann, M. Schlüter, and C. Chiang, Norm-Conserving Pseudopotentials. Phys. Rev. Lett. 43, 1494-1497, doi:10.1103/PhysRevLett.43.1494 (1979).
73 Y.-H. Tang, Electronic and structural properties of quaternary compounds Doctor of Philosophy thesis, National Sun Yat-sen University, (2005).
74 Y. Zhou, et al. Self-consistent-field calculations using Chebyshev-filtered subspace iteration. J. Comput. Phys. 219, 172-184, doi:10.1016/j.jcp.2006.03.017 (2006).
75 S. Grimme, et al. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132, 154104, doi:10.1063/1.3382344 (2010).
76 Chenming Hu, Modern Semiconductor Devices for Integrated Circuits. (Prentice Hall, 2010).
77 S. Datta, Lesson form Nanoelectronics: A new perspective on transport. Vol. 1 (World Scientific Publising Co. Pte. Ltd., 2012).
78 S. Datta, Electrical Transport in Mesoscopic System. (Cambridge University Press, 1997).
79 J. C. Cuevas, and E. Scheer, Molecular Electronics: An Introduction to Theory and Experiment. (World Scientific, 2010).
80 S. Datta, A New Perspective on Transport - Part A: Basic Concepts. (World Scientific, 2017).
81 S. Datta, Quantum Transport: Atom to Transistor. (Cambridge University Press, 2005).
82 H. Haug, and A.-P. Jauho, Quantum Kinetics in Transport and Optics of Semiconductors. 2 edn, Vol. 123 (Springer Berlin, Heidelberg, 2008).
83 S. Datta, Quantum Phenomena. Vol. 8 278 (Addison-Wesley, 1989).
84 S.-G. Tan, and M. B. A. Jalil, Introduction to the physics of nanoelectronics. (Oxford: Woodhead Pub., 2012).
85 K. Y. Camsari, S. Chowdhury, and S. Datta, The Non-Equilibrium Green Function (NEGF) Method, arXiv:2008.01275v2 (2008).
86 Y. Zhu, L. Liu, and H. Guo, Atomistic Simulation of Quantum Transport in Nanoelectronic Devices. (2016).
87 S. Datta, A New Perspective on Transport - Part B: Quantum Transport. (World Scientific, 2018).
88 L. V. Keldysh, Diagram technique for nonequilibrium processes. Soviet Physics JETP 20, 1018-1026 (1965).
89 M. Brandbyge, et al. Density-functional method for nonequilibrium electron transport. Phys. Rev. B 65, 165401, doi:10.1103/PhysRevB.65.165401 (2002).
90 Y. Xuea, et al, First-principles based matrix Green's function approach to molecular electronic devices: general formalism. Chem. Phys. 281, 151-170 (2002).
91 J. Wang, and H. Guo, Relation between nonequilibrium Green's function and Lippmann-Schwinger formalism in the first-principles quantum transport theory. Phys. Rev. B 79, 045119, doi:10.1103/PhysRevB.79.045119 (2009).
92 Y. Zhu, et al, Quantum transport theory with nonequilibrium coherent potentials. Phys. Rev. B 88, 205415, doi:10.1103/PhysRevB.88.205415 (2013).
93 J. Maassen, et al. Quantum Transport Modeling From First Principles. Proc IEEE Inst Electr Electron Eng 101, 518-530, doi:10.1109/jproc.2012.2197810 (2013).
94 D. Waldron, et al. First Principles Modeling of Tunnel Magnetoresistance of Fe/MgO/Fe Trilayers. Phys. Rev. Lett. 97, 226802, doi:10.1103/PhysRevLett.97.226802 (2006).
95 J. Maassen, First principles simulations of nanoelectronic devices Doctor of Philosophy thesis, McGill University, (2011).
96 I.-H. Hong, C.-J. Gao, K.-B. Lin, and C.-C. Kaun, Self-organized C70/C60 heterojunction nanowire arrays on Si(110) for Si-based molecular negative differential resistance nanodevices. Appl. Surf. Sci. 531, 147338, doi:10.1016/j.apsusc.2020.147338 (2020).
97 A. Vilan, et al. Molecules on Si: Electronics with chemistry. Adv. Mater. 22, 140 - 159 (2010).
98 M.-H. Yun et al. High-efficiency, hybrid Si/C60 heterojunction solar cells. J. Mater. Chem. A 4, 16410-16417 (2016).
99 M.-L. Seol, et al. Hybrid porphyrin-silicon nanowire field-effect transistor by opto-electrical excitation. ACS Nano 6, 7885-7892 (2012).
100 X. Yu, et al. Fabrication of reproducible, integration-compatible hybrid molecular/Si electronics. Small 10, 5151-5160 (2014).
101 B. Baris et al. Robust and open tailored supramolecular networks controlled by the template effect of a silicon surface. Angew. Chem. Int. Ed. 50, 4094-4098 (2011).
102 P. J. Moriarty, Fullerene adsorption on semiconductor surfaces,. Surf. Sci. Rep. 65, 175-277 (2010).
103 Y.-H. Lu, et al. A possible reaction pathway to fabricate a half‐metallic wire on a silicon surface. Adv. Fun. Mater. 23, 2233-2238 (2013).
104 Y. Makoudi, et al. Supramolecular self-assembly on the B-Si(111)-(√3x√3) R30° surface: From single molecules to multicomponent networks. Surf. Sci. Rep. 72, 316-349 (2017).
105 Y. Makoudi, et al. Towards 1D nanolines on a monolayered supramolecular network adsorbed on a silicon surface. Nanoscale 8, 12347-12351 (2016).
106 Y. Makoudi, et al. Supramolecular self-assembly of brominated molecules on a silicon surface. Chem. Commun. 50, 5714-5716 (2014).
107 J. A. Smerdon, et al. spatially resolved rectification in a donor-acceptor molecular heterojunction. Nano Lett. 16, 2603-26071 (2016).
108 M. Gobbi, et al. Room-temperature spin transport in C60-based spin valves. Adv. Mater. 23, 1609-1613 (2011).
109 S. Liang et al. Curvature-enhanced spin-orbit coupling and spinterface effect in fullerene-based spin valves. Sci. Rep. 6 (2016).
110 Song, Y. et al. Origin of multi-level switching and telegraphic noise in organic nanocomposite memory devices. Sci. Rep. 6 (2016).
111 G. Jnawali et al. Observation of ground- and excited-state charge transfer at the C60/Graphene interface. ACS Nano 9, 7175-7185 (2015).
112 J. He, et al. The weak π-π interaction originated resonant tunneling and fast switching in the carbon based electronic devices. AIP Adv. 2 (2012).
113 M. Grobis, et al. Tuning negative differential resistance in a molecular film. Appl. Phys. Lett. 86 (2005).
114 P. Zhao, et al. Rectifying properties of a boron/nitrogen-doped C131-based molecular junction: A first-principles study. Physica B Condens. Matter 407, 73-76 (2012).
115 X. H. Zheng, et al. Tuning the transport properties of a (C60)2 bridge with electron and hole dopings. J. Chem. Phys. 134 (2011).
116 X. Zheng, et al. Negative differential resistance in C60-based electronic devices. ACS Nano 4, 7205-7210 (2010).
117 B. Xu and Y. Dubi, Negative differential conductance in molecular junctions: an overview of experiment and theory. J. Phys. Condens. Matter 27 (2015).
118 P. Sharma, et al. Room-temperature negative differential resistance in graphene field effect transistors: experiments and theory. ACS Nano 9, 620-625 (2015).
119 Y. Wu, et al. Three-terminal graphene negative differential resistance devices. ACS Nano 6, 2610-2616 (2012).
120 J. Xu, et al. An STM/STS study of site-selective adsorption of C70 molecules onto arc-shaped BODIPY molecular-networks. Nanoscale 9, 2579-2584 (2017).
121 K.-S. Kim, et al. Visualizing atomic-scale negative differential resistance in bilayer graphene. Phys. Rev. Lett. 110 (2013).
122 S. Yoshimoto, et al. Epitaxial supramolecular assembly of fullerenes formed by using a coronene template on a Au(111) surface in solution. J. Am. Chem. Soc. 129, 4366-4376 (2007).
123 Q. Li, et al. Recent advances in one-dimensional organic p-n heterojunctions for optoelectronic device applications. J. Mater. Chem. C 4, 9388-9398 (2016).
124 I.-H. Hong and C.-J. Gao, Large area self-ordered parallel C60 molecular nanowire arrays on Si(110) surfaces. Carbon 107, 925-932 (2016).
125 I.-H. Hong, S.-C. Yen and F.-S. Lin, Two-dimensional self-organization of an ordered Au silicide nanowire network on a Si(110)-16×2 surface. Small, 1855-1861 (2009).
126 I.-H. Hong, T.-M. Chen and Y.-F. Tsai, Atomically precise self-organization of perfectly ordered gadolinium-silicide nanomeshes controlled by anisotropic electromigration-induced growth on Si(110)-16×2 surfaces. Appl. Surf. Sci. 349, 49-58 (2015).
127 I.-H. Hong, T.-M. Chen and Y.-F. Tsai, Observation of room-temperature negative differential resistance in Gd-doped Si nanowires on Si(110) surface. Appl. Phys. Lett. 101 (2012).
128 I.-H. Hong, Y.-C. Liao and S.-C. Yen, Self-organization of a highly integrated silicon nanowire network on a Si(110)-16×2 surface by controlling domain growth. Adv. Funct. Mater. 19, 3389-3395 (2009).
129 I.-H. Hong, Y.-C. Liao and Y.-F. Tsai, Template-directed atomically precise self-organization of perfectly ordered parallel cerium silicide nanowire arrays on Si(110)-16×2 surfaces. Nanoscale Res. Lett. 8 (2013).
130 F. S. Kim, G. Ren and S. A. Jenekhe, One-dimensional nanostructures of p-conjugated molecular systems: assembly, properties, and applications from photovoltaics, sensors, and nanophotonics to nanoelectronics. Chem. Mater. 23, 682-732 (2011).
131 W. Harneit, et al. Architectures for a spin quantum computer based on endohedral fullerenes. Phys Status Solidi B Basic Res 233, 453-461 (2002).
132 Y. Maeyoshi, et al. Fullerene nanowires as a versatile platform for organic electronics. Sci. Rep. 2, 1-6 (2012).
133 P. Vilmercati, et al. Mesoscopic donor-acceptor multilayer by ultrahigh-vacuum codeposition of Zn-Tetraphenyl-Porphyrin and C70. J. Am. Chem. Soc. 131, 644-652 (2009).
134 Y. Wei, and J. E. Reutt-Robey, Directed organization of C70 kagome lattice by titanyl phthalocyanine monolayer template. J. Am. Chem. Soc. 133, 15232-15235 (2011).
135 Y. Wang, et al. Tuning fulleride electronic structure and molecular ordering via variable layer index. Nat. Mater. 7, 194-197 (2008).
136 I. F. Torrente, et al. Spectroscopy of C60 single molecules: The role of screening on energy level alignment. J. Phys. Condens. Matter 20 (2008).
137 M. Swart and P. T. van Duijnenc, Rapid determination of polarizability exaltation in fullerene-based nanostructures. J. Mater. Chem. C 3, 23-25 (2015).
138 B. W. Heinrich, et al. Engineering negative differential conductance with the Cu(111) surface state. Phys. Rev. Lett. 107 (2011).
139 C. Zeng, et al. Negative differential-resistance device involving two C60 molecules. Appl. Phys. Lett. 77, 3595-3597 (2000).
140 L. Chen, et al. Mechanism for negative differential resistance in molecular electronic devices: local orbital symmetry matching. Phys. Rev. Lett. 99 (2007).
141 Y. Xue, et al. Negative differential resistance in the scanning-tunneling spectroscopy of organic molecules. Phys. Rev. B 59 (1999).
142 K. J. Franke, et al. Reducing the molecule-substrate coupling in C60-based nanostructures by molecular interactions. Phys. Rev. Lett. 100 (2008).
143 A. Picone, et al. Controlling the electronic and structural coupling of C60 nano films on Fe(001) through oxygen adsorption at the interface. ACS Appl. Mater. Interfaces 8, 26418-26424 (2016).
144 B. Larade, et al. Conductance, I-V curves, and negative differential resistance of carbon atomic wires. Phys. Rev. B 64 (2008).
145 Y.-R. Chen, et al. Ab Initio and Theoretical Study on Electron Transport through Polyene Junctions in between Carbon Nanotube Leads of Various Cuts. Sci. Rep. 10, 8033, doi:10.1038/s41598-020-63363-3 (2020).
146 S. lijima, Helical microtubles of graphic carbon. Nature 354 (1991).
147 N. Hamada, et al. New one-dimensional conductors: Graphitic microtubules. Phys. Rev. Lett. 68, doi:10.1103/PhysRevLett.68.1579 (1992).
148 R. Saito, et al. Electronic structure of graphene tubules based on C60. Phys. Rev. B 46, doi:10.1103/PhysRevB.46.1804 (1992).
149 S. Iijima, and T. Ichihashi, Single-shell carbon nanotubes of 1-nm diameter. Nature 363, doi:10.1038/363603a0 (1993).
150 M. Fujita, et al. Peculiar Localized State at Zigzag Graphite Edge. J. Phys. Soc. Jpn. 65, doi:10.1143/JPSJ.65.1920 (1996).
151 K. Nakada, et al. Edge state in graphene ribbons: Nanometer size effect and edge shape dependence. Phys. Rev. B 54, doi:10.1103/PhysRevB.54.17954 (1996).
152 K. Sasaki, et al. Stabilization mechanism of edge states in graphene. Appl. Phys. Lett. 88, doi:10.1063/1.2181274 (2006).
153 K. I. Sasaki, et al. Hamiltonian decomposition for bulk and surface states. Phys. Rev. Lett. 102, doi:10.1103/PhysRevLett.102.146806 (2009).
154 M. J. Schmidt, and D. Loss, Edge states and enhanced spin-orbit interaction at graphene/graphane interfaces. Phys. Rev. B 81, doi:10.1103/PhysRevB.81.165439 (2010).
155 K. Wakabayashi, et al. Electronic states of graphene nanoribbons and analytical solutions. Sci. Tech. Adv. Mater. 11, doi:10.1088/1468-6996/11/5/054504 (2010).
156 M. Wimmer, et al. Robustness of edge states in graphene quantum dots. Phys. Rev. B 82, doi:10.1103/PhysRevB.82.045409 (2010).
157 A. De Vita, et al. Electronic structure at carbon nanotube tips. Appl. Phys. A 68, doi:10.1007/s003390050889 (1999).
158 J. C. Charlier, Defects in Carbon Nanotubes. Acc. Chem. Res. 35, doi:10.1021/ar010166k (2002).
159 K. I. Sasaki, Local density of states at zigzag edge of carbon nanotubes and graphene. Phys. Rev. B 75, doi:10.1103/PhysRevB.75.235430 (2007).
160 H. Santos, et al. Interface states in carbon nanotube junctions: Rolling up ghraphene. Phys. Rev. B 80, doi:10.1103/PhysRevB.80.035436 (2009).
161 P. L. Giunta, and S. P. Kelty, Direct observation of graphite layer edge states by scanning tunneling microscopy. J. Chem. Phys. 114, doi:10.1063/1.1334349 (2001).
162 Y. Kobayashi, et al. Observation of zigzag and armchair edges of graphite using scanning tunneling microscopy and spectroscopy. Phys. Rev. B 71, doi:10.1103/PhysRevB.71.193406 (2005).
163 Y. Niimi, Scanning tunneling microscopy and spectroscopy studies of graphite edges. App. Surf. Sci. 241, doi:10.1016/j.apsusc.2004.09.091 (2005).
164 Y. Kobayashi, et al. Edge state on hydrogen-terminated graphite edges investigated by scanning tunneling microscopy. Phys. Rev. B 73, doi:10.1103/PhysRevB.73.125415 (2006).
165 Niimi, Y. et al. Scanning tunneling microscopy and spectroscopy of the electronic local density of states of graphite surfaces near monatomic step edges. Phys. Rev. B 73, doi:10.1103/PhysRevB.73.085421 (2006).
166 P. Kim, et al. Electronic Density of States of Atomically Resolved Single-Walled Carbon Nanotubes: Van Hove Singularities and End States. Phys. Rev. Lett. 82, doi:10.1103/PhysRevLett.82.1225 (1999).
167 E. D. Minot, et al. Determination of electron orbital magnetic moments in carbon nanotubes. Nature 428, doi:10.1038/nature02425 (2004).
168 C.-C. Kaun, et al. Current-voltage characteristics of carbon nanotubes with substitutional nitrogen. Phys. Rev. B 65, doi:10.1103/PhysRevB.65.205416 (2002).
169 J. C. Charlier, et al. Electronic and transport properties of nanotubes. Rev. Mod. Phys. 79, doi:10.1103/RevModPhys.79.677 (2007).
170 W. Ren, Models for the Structure and Electronic Transmission of Carbon Nanotubes Covalently Linked by a Molecular Bridge via Amide Couplings. J. Phys. Chem. C 111, doi:10.1021/jp0659958 (2007).
171 E. A. Laird, Quantum transport in carbon nanotubes. Rev. Mod. Phys. 87, doi:10.1103/RevModPhys.87.703 (2015).
172 I.-C. Chen, et al. Fabrication of high-aspect-ratio carbon nanocone probes by electron beam induced deposition patterning. Nanotechnology 17, 4322-4326, doi:10.1088/0957-4484/17/17/007 (2006).
173 I.-C. Chen, et al. Extremely sharp carbon nanocone probes for atomic force microscopy imaging. Appl. Phys. Lett. 88, 153102, doi:10.1063/1.2193435 (2006).
174 L.-H. Chen, et al. Growth of aligned carbon nanotubes on carbon microfibers by dc plasma-enhanced chemical vapor deposition. Appl. Phys. Lett. 88, 033103, doi:10.1063/1.2166472 (2006).
175 X.-R. Ye, et al. Electrochemical Modification of Vertically Aligned Carbon Nanotube Arrays. J. Phys. Chem. B 110, 12938-12942, doi:10.1021/jp057507m (2006).
176 I.-C. Chen, et al. Control of curvature in highly compliant probe cantilevers during carbon nanotube growth. Nano Lett. 7, 3035-3040, doi:10.1021/nl071490x (2007).
177 I.-C. Chen, et al. Iron-platinum-coated carbon nanocone probes on tipless cantilevers for high resolution magnetic force imaging. Nanotechnology 19, 075501, doi:10.1088/0957-4484/19/7/075501 (2008).
178 I.-C. Chen, et al. Growth of bent carbon nanotubes by in-situ control of cantilever bending. Carbon 49, 2760-2765, doi:10.1016/j.carbon.2011.03.001 (2011).
179 A. Naeemi, et al. in 2004 IEEE Int. Electron Devices Meet (2004).
180 N.-K. Jha, and D. Chen, Nanoelectronic Circuit Design. (Springer Nature, 2011).
181 W. Ren, et al. Universal spin-Hall conductance fluctuations in two dimensions. Phys. Rev. Lett. 97, doi:10.1103/PhysRevLett.97.066603 (2006).
182 Y. Xue, and M. A. Ratner, Microscopic study of electrical transport through individual molecules with metallic contacts. I. Band lineup, voltage drop, and high-field transport. Phys. Rev. B 68, doi:10.1103/PhysRevB.68.115406 (2003).
183 G. S. Tulevski, et al. Formation of Catalytic Metal-Molecule Contacts. Science 309, doi:10.1126/science.1112767 (2005).
184 S. Y. Quek, Amine-Gold Linked Single-Molecule Circuits: Experiment and Theory. Nano lett. 7, doi:10.1021/nl072058i (2007).
185 Y.-R. Chen, et al. Electron transport through polyene junctions in between carbon nanotubes: An ab initio realization. Carbon 94, 548-553, doi:10.1016/j.carbon.2015.06.085 (2015).
186 M. Magoga, and C. Joachim, Conductance of molecular wires connected or bonded in parallel. Phys. Rev. B 59, doi:10.1103/PhysRevB.59.16011 (1999).
187 M. Freeley, Site-Specific One-to-One Click Coupling of Single Proteins to Individual Carbon Nanotubes: A Single-Molecule Approach. J. Am. Chem. Soc. 139, doi:10.1021/jacs.7b07362 (2017).
188 J. Zhu, Solution-Processable Carbon Nanoelectrodes for Single-Molecule Investigations. J. Am. Chem. Soc. 138, doi:10.1021/jacs.5b12086 (2016).
189 Y.-R. Chen, et al. Theoretical study of trends in conductance for molecular junctions formed with armchair carbon nanotube electrodes. Phys. Rev. B 76, doi:10.1103/PhysRevB.76.115408 (2007).
190 K.-P. Dou, and C.-C. Kaun, Conductance Superposition Rule in Carbon Nanowire Junctions with Parallel Paths. J. Phys. Chem. C 120, doi:10.1021/acs.jpcc.6b06399 (2016).
191 P. Koskinen, et al. Self-Passivating Edge Reconstructions of Graphene. Phys. Rev. Lett. 101, 115502, doi:10.1103/PhysRevLett.101.115502 (2008).
192 K.-B. Lin, Y.-H. Su, and C.-C. Kaun, Interfacial effects on leakage currents in Cu/α-cristobalite/Cu junctions. Sci. Rep. 10, 5303, doi:10.1038/s41598-020-62356-6 (2020).
193 C. M. Garner, et al. Challenges for dielectric materials in future integrated circuit technologies. Microelectron Reliab 45, 919-924, doi:10.1016/j.microrel.2004.11.053 (2005).
194 S. Lombardo, et al. Dielectric breakdown mechanisms in gate oxides. J. Appl. Phys. 98, 121301, doi:10.1063/1.2147714 (2005).
195 S. Mukhopadhyay, et al. in Proceedings of the 2005 international symposium on Low power electronics and design, 8-13 (2005).
196 D. A. Muller, A sound barrier for silicon? Nat. Mater. 4, 645, doi:10.1038/nmat1466 (2005).
197 H.-L. Lu, and D.-W. Zhang, Issues in High‐k Gate Dielectrics and its Stack Interfaces. High-k Gate Dielectrics for CMOS Technology, 31-59 (2012).
198 S. Mohsenifar, and M. Shahrokhabadi, Gate Stack High-k Materials for Si-Based MOSFETs Past, Present, and Futures. Microelectron. solid state electron. 4, 12-24 (2015).
199 L. Li, et al. Extreme ultraviolet resist materials for sub-7 nm patterning. Chem. Soc. Rev. 46, 4855-4866, doi:10.1039/C7CS00080D (2017).
200 G. Bersuker, et al. Dielectrics for future transistors. Mater. Today 7, 26-33 (2004).
201 D. Shamiryan, et al. Low-k dielectric materials. Mater. Today 7, 34-39 (2004).
202 B. D. Hatton, et al. Materials chemistry for low-k materials. Mater. Today 9, 22-31 (2006).
203 X.-P. Zhang, et al. Nanocrystalline copper films are never flat. Science 357, 397-399, doi:10.1126/science.aan4797 (2017).
204 T. Gupta, Copper Interconnect Technology. (Springer Nature, 2009).
205 L.-N. Zhao, et al. Atomistic modeling of the electrostatic and transport properties of a simplified nanoscale field effect transistor. J Comput Electron 7, 500-508 (2008).
206 X. Wang, et al. Atomistic Simulation of Gate Effect on Nanoscale Intrinsic si Field-Effect Transistors. Int J Nanosci 8, 113-117 (2009).
207 J. Maassen, and H. Guo, Suppressing Leakage by Localized Doping in Si Nanotransistor Channels. Phys. Rev. Lett. 109, doi:10.1103/PhysRevLett.109.266803 (2012).
208 D. J. Siegel, et al. Adhesion, atomic structure, and bonding at the Al(111)/α-Al2O3(0001) interface: A first principles study. Phys. Rev. B 65, 085415 (2002).
209 J. Kang, et al. Direct and defect-assisted electron tunneling through ultrathin SiO2 layers from first principles. Phys. Rev. B 77, doi:10.1103/PhysRevB.77.195321 (2008).
210 E. Nadimi, et al. First Principle Calculation of the Leakage Current Through SiO2 and SiOxNy Gate Dielectrics in MOSFETs. IEEE Trans Electron Devices 57, 690-695, doi:10.1109/ted.2009.2038646 (2010).
211 X. Cartoixa, et al. Transport properties of oxygen vacancy filaments in metal/crystalline or amorphous HfO2/metal structures. Phys. Rev. B 86, doi:10.1103/PhysRevB.86.165445 (2012).
212 T. A. Pham, et al. Band offsets and dielectric properties of the amorphous Si3N4/Si(100) interface: A first-principles study. Appl. Phys. Lett. 102, doi:10.1063/1.4811481 (2013).
213 Y. Wang, et al. Direct tunneling through high-k amorphous HfO2: Effects of chemical modification. J. Appl. Phys. 116, doi:10.1063/1.4890010 (2014).
214 D. A. Muller, et al. The electronic structure at the atomic scale of ultrathin gate oxides. Nature 399, 758-761 (1999).
215 J. B. Neaton, D. A. Muller, and N. W. Ashcroft, Electronic properties of the Si/SiO2 interface from first principles. Phys. Rev. Lett. 85, 1298-1301, doi:10.1103/PhysRevLett.85.1298 (2000).
216 J.-H. Oh, et al. Chemical structure of the ultrathin SiO2/Si(100) interface: An angle-resolved Si 2p photoemission study. Phys. Rev. B 63, 205310 (2001).
217 K.-N. Tu, Recent advances on electromigration in very-large-scale-integration of interconnects. J. Appl. Phys. 94, 5451-5473, doi:10.1063/1.1611263 (2003).
218 M. H. Evans, et al. First-Principles Mobility Calculations and Atomic-Scale Interface Roughness in Nanoscale Structures. Phys. Rev. Lett. 95, 106802 (2005).
219 K.-C. Chen, et al. Observation of Atomic Diffusion at Twin-Modified Grain Boundaries in Copper. Science 321, 1066-1069, doi:10.1126/science.1160777 (2008).
220 V. Timoshevskii, et al. The influence of surface roughness on electrical conductance of thin Cu films: An ab initio study. J. Appl. Phys. 103, doi:10.1063/1.2937188 (2008).
221 K. H. Bevan, et al. Terminating Surface Electromigration at the Source. Phys. Rev. Lett. 106, 156404, doi:10.1103/PhysRevLett.106.156404 (2011).
222 K. Nagao, J. Neaton, and N. Ashcroft, First-principles study of adhesion at Cu/SiO2 interfaces. Phys. Rev. B 68, 125403 (2003).
223 T.-R. Shan, et al. Molecular dynamics study of the adhesion of Cu/SiO2 interfaces using a variable-charge interatomic potential. Phys. Rev. B 83, doi:10.1103/PhysRevB.83.115327 (2011).
224 E. J. Reed, Two-dimensional tellurium. Nature 552, 40-41, doi:10.1038/d41586-017-07159-y (2017).
225 Z. Zhu, et al. Multivalency-Driven Formation of Te-Based Monolayer Materials: A Combined First-Principles and Experimental study. Phys. Rev. Lett. 119, 106101, doi:10.1103/PhysRevLett.119.106101 (2017).
226 C. Zhao, et al. Evaporated tellurium thin films for p-type field-effect transistors and circuits. Nat. Nanotechnol. 15, 53-58, doi:10.1038/s41565-019-0585-9 (2020).
227 H. Peng, et al. Elemental tellurium as a chiral p-type thermoelectric material. Phys. Rev. B 89, doi:10.1103/PhysRevB.89.195206 (2014).
228 D.-K. Sang, et al. Monolayer beta-tellurene: a promising p-type thermoelectric material via first-principles calculations. Nanoscale 11, 18116-18123, doi:10.1039/c9nr04176a (2019).
229 X. Huang, et al. Epitaxial Growth and Band Structure of Te Film on Graphene. Nano Lett. 17, 4619-4623, doi:10.1021/acs.nanolett.7b01029 (2017).
230 Y. Liu, et al. Tellurium: Fast Electrical and Atomic Transport along the Weak Interaction Direction. J. Am. Chem. Soc. 140, 550-553, doi:10.1021/jacs.7b09964 (2018).
231 J. Yan, et al. Monolayer tellurene-metal contacts. J. Mater. Chem. C 6, 6153-6163, doi:10.1039/c8tc01421c (2018).
232 J. Qiao, et al. Few-layer Tellurium: one-dimensional-like layered elementary semiconductor with striking physical properties. Sci. Bull. 63, 159-168, doi:10.1016/j.scib.2018.01.010 (2018).
233 S. Huang, et al. Anisotropic thermal conductivity in 2D tellurium. 2D Mater. 7, doi:10.1088/2053-1583/ab4eee (2019).
234 S. Gao, et al. Ultra-strong anisotropic photo-responsivity of bilayer tellurene: a quantum transport and time-domain first principle study. Nanophotonics 9, 1931-1940, doi:10.1515/nanoph-2019-0435 (2020).
235 S. Zhao, et al. In-plane anisotropic electronics based on low-symmetry 2D materials: progress and prospects. Nanoscale Advances 2, 109-139, doi:10.1039/c9na00623k (2020).
236 Z. Gao, F. Tao., and J. Ren. Unusually low thermal conductivity of atomically thin 2D tellurium. Nanoscale 10, 12997-13003, doi:10.1039/C8NR01649F (2018).
237 T. Koga, et al. Carrier pocket engineering to design superior thermoelectric materials using GaAs/AlAs superlattices. Appl. Phys. Lett. 73, doi:10.1063/1.122640 (1998).
238 D. Wickramaratne, et al. Electronic and thermoelectric properties of few-layer transition metal dichalcogenides. J. Chem. Phys. 140, doi:10.1063/1.4869142 (2014).
239 S. Kumar, and U. Schwingenschlogl, Thermoelectric Response of Bulk and Monolayer MoSe2 and WSe2. Chem. Mater. 27, 1278-1284, doi:10.1021/cm504244b (2015).
240 K. Hippalgaonkar, et al. High thermoelectric power factor in two-dimensional crystals of MoS2. Phys. Rev. B 95, doi:10.1103/PhysRevB.95.115407 (2017).
241 D. Qin, et al. Monolayer PdSe2: A promising two-dimensional thermoelectric material. Sci. Rep. 8, doi:10.1038/s41598-018-20918-9 (2017).
242 K.-C. Chen, et al. Multi-layer elemental 2D materials: antimonene, germanene and stanene grown directly on molybdenum disulfides. Semicond Sci Technol 34, 105020, doi:10.1088/1361-6641/ab3c8a (2019).
243 Y. Wang, et al. Van der Waals contacts between three-dimensional metals and two-dimensional semiconductors. Nature 568, 70-74, doi:10.1038/s41586-019-1052-3 (2019).
244 K. S. Novoselov, et al. 2D materials and van der Waals heterostructures. Science 353, aac9439, doi:10.1126/science.aac9439 (2016).
245 G. Fiori, et al. Electronics based on two-dimensional materials. Nat. Nanotechnol. 9, 768-779, doi:10.1038/nnano.2014.207 (2014).
246 A. K. Geim, et al, Van der Waals heterostructures. Nature 499, 419-425 (2013).
247 M.-Y. Li, et al. Heterostructures based on two-dimensional layered materials and their potential applications. Mater. Today 19, 322-335, doi:10.1016/j.mattod.2015.11.003 (2016).
248 A. M. Ionescu, and H. Riel, Tunnel field-effect transistors as energy-efficient electronic switches. Nature 479, 329-337, doi:10.1038/nature10679 (2011).
249 C. Qiu, et al. Dirac-source field-effect transistors as energy-efficient, high-performance electronic switches. Science 361, 387-392, doi:10.1126/science.aap9195 (2018).
250 R. Ganatra, Q. Zhang, Few-Layer MoS2: A Promising Layered Semiconductor. ACS Nano 8, 4074-4099, doi:10.1021/nn405938z (2014).
251 S. Wu, et al. High-performance p-type MoS2 field-effect transistor by toroidal-magnetic-field controlled oxygen plasma doping. 2D Mater. 6, 025007, doi:10.1088/2053-1583/aafe2d (2019).
252 C.-R. Wu, et al. Multilayer MoS2 prepared by one-time and repeated chemical vapor depositions: anomalous Raman shifts and transistors with high ON/OFF ratio. J. Phys. D 48, 435101, doi:10.1088/0022-3727/48/43/435101 (2015).
253 B. Radisavljevic, et al. Single-layer MoS2 transistors. Nat. Nanotechnol. 6, 147-150, doi:10.1038/nnano.2010.279 (2011).
254 R.-T. Tung, The physics and chemistry of the Schottky barrier height. Appl. Phys. Rev. 1, 011304, doi:10.1063/1.4858400 (2014).
255 Y. Liu, et al. Approaching the Schottky-Mott limit in van der Waals metal-semiconductor junctions. Nature 557, 696-700, doi:10.1038/s41586-018-0129-8 (2018).
256 H. Zhong, et al. Interfacial Properties of Monolayer and Bilayer MoS2 Contacts with Metals: Beyond the Energy Band Calculations. Sci. Rep. 6, 21786, doi:10.1038/srep21786 (2016).
257 A. Allain, et al. Electrical contacts to two-dimensional semiconductors. Nat. Mater. 14, 1195-1205, doi:10.1038/nmat4452 (2015).
258 D. Jena, et al. 2D crystal semiconductors: Intimate contacts. Nat. Mater. 13, 1076-1078, doi:10.1038/nmat4121 (2014).
259 M. H. Guimaraes, et al. Atomically Thin Ohmic Edge Contacts Between Two-Dimensional Materials. ACS Nano 10, 6392-6399, doi:10.1021/acsnano.6b02879 (2016).
260 C. D. English, et al. Improved Contacts to MoS2 Transistors by Ultra-High Vacuum Metal Deposition. Nano Lett. 16, 3824-3830, doi:10.1021/acs.nanolett.6b01309 (2016).
261 J. Gao, et al. Transition-Metal Substitution Doping in Synthetic Atomically Thin Semiconductors. Adv. Mater. 28, 9735-9743, doi:10.1002/adma.201601104 (2016).
262 H.-A. Chen, et al. Single-Crystal Antimonene Films Prepared by Molecular Beam Epitaxy: Selective Growth and Contact Resistance Reduction of the 2D Material Heterostructure. ACS Appl. Mater. Interfaces 10, 15058-15064, doi:10.1021/acsami.8b02394 (2018).
263 D. Singh, et al. Antimonene: a monolayer material for ultraviolet optical nanodevices. J. Mater. Chem. C 4, 6386-6390, doi:10.1039/c6tc01913g (2016).
264 L. Wu, et al. Structural and electronic properties of two-dimensional stanene and graphene heterostructure. Nanoscale Res. Lett. 11, 525, doi:10.1186/s11671-016-1731-z (2016).
265 J. Ji, et al. Two-dimensional antimonene single crystals grown by van der Waals epitaxy. Nat. Commun. 7, 13352, doi:10.1038/ncomms13352 (2016).
266 P.-C. Shen, et al. Ultralow contact resistance between semimetal and monolayer semiconductors. Nature 593, 211-217, doi:10.1038/s41586-021-03472-9 (2021).
267 K. S. Novoselov, et al. Electric Field Effect in Atomically Thin Carbon Films. Science 306, 666-669 (2004).
268 K. F. Mak, et al. Atomically Thin MoS2: A New Direct-Gap Semiconductor. Phys. Rev. Lett. 105, 136805 (2010).
269 X. Duan, et al. Lateral epitaxial growth of two-dimensional layered semiconductor heterojunctions. Nat. Nanotechnol. 9, 1024-1030 (2014).
270 C.-R. Wu, et al. Multilayer MoS2 Prepared by One-time and Repeated Chemical Vapor Depositions: Anomalous Raman Shifts and Transistors with High ON/OFF Ratio. J. Phys. D 48, 435101 (2015).
271 S.-T. Pi, et al. Site-dependent doping effects on quantum transport in zigzag graphene nanoribbons. Carbon 94, 196-201, doi:10.1016/j.carbon.2015.06.069 (2015).
272 J. Zhao, et al. Rise of silicene: A competitive 2D material. Prog. Mater. Sci. 83, 24-151 (2016).
273 L. Li, et al. Black phosphorus field-effect transistors. Nat. Nanotechnol. 9, 372-377 (2014).
274 W. Bao, et al. High mobility ambipolar MoS2 field-effect transistors: Substrate and dielectric effects. Appl. Phys. Lett. 102, 042104 (2013).
275 H.-L. Tang, et al. Multilayer Graphene-WSe2 Heterostructures for WSe2 Transistors. Nano Lett. 11, 12817-12823 (2017).
276 Y. Liu, et al. Promises and prospects of two-dimensional transistors. Nature 591, 43-53, doi:10.1038/s41586-021-03339-z (2021).
277 S. B. Desai, et al. MoS2 transistors with 1-nanometer gate lengths. Science 354, 99-102, doi:doi:10.1126/science.aah4698 (2016).
278 G. M. Marega, et al. Logic-in-memory based on an atomically thin semiconductor. Nature 587, 72-77, doi:10.1038/s41586-020-2861-0 (2020).
279 J. H. Park, et al. Band Structure Engineering of Layered WSe2 via One-Step Chemical Functionalization. ACS Nano 13, 7545-7555, doi:10.1021/acsnano.8b09351 (2019).
280 M.-Y. Li, et al. Heterostructures based on two-dimensional layered materials and their potential applications. Mater. Today 19, 322-335 (2016).
281 C.-R. Wu, et al. Establishment of 2D Crystal Heterostructures by Sulfurization of Sequential Transition Metal Depositions: Preparation, Characterization, and Selective Growth. Nano Lett. 16, 7093-7097 (2016).
282 S. Larentis, et al. Field-effect transistors and intrinsic mobility in ultra-thin MoSe2 layers. Appl. Phys. Lett. 101, doi:10.1063/1.4768218 (2012).
283 S. Das, et al. High performance multilayer MoS2 transistors with scandium contacts. Nano Lett. 13, 100-105, doi:10.1021/nl303583v (2013).
284 H. Liu, et al. Fundamentals in MoS2 Transistors: Dielectric, Scaling and Metal Contacts. ECS Trans 58, 203-208, doi:10.1149/05807.0203ecst (2013).
285 W. Zhao et al. Evolution of Electronic Structure in Atomically Thin Sheets of WS2 and WSe2. ACS Nano 7, 791-797, doi:10.1021/nn305275h (2013).
286 J. Carrete, et al. Finding Unprecedentedly Low-Thermal-Conductivity Half-Heusler Semiconductors via High-Throughput Materials Modeling. Phys. Rev. X 4, doi:10.1103/PhysRevX.4.011019 (2014).
287 D. Ovchinnikov, et al. Electrical Transport Properties of Single-Layer WS2. ACS Nano 8, 8174-8181, doi:10.1021/nn502362b (2014).
288 L. Yang, et al. Chloride molecular doping technique on 2D materials: WS2 and MoS2. Nano Lett. 14, 6275-6280, doi:10.1021/nl502603d (2014).
289 Y. Huang et al. Tin Disulfide - An Emerging Layered Metal Dichalcogenide Semiconductor: Materials Properties and Device Characteristics. ACS Nano 8, 10743-10755 (2014).
290 S.-S. Chee, et al. Sulfur vacancy-induced reversible doping of transition metal disulfides via hydrazine treatment. Nanoscale 9, 9333-9339, doi:10.1039/c7nr01883e (2017).
291 L. Wang, et al. Graphene-based transparent conductive electrodes for GaN-based light emitting diodes: Challenges and countermeasures. Nano Energy 12, 419-436 (2015).
292 H.-A. Chen, et al. Type-II Superlattice Infrared Photodetectors with Graphene Transparent Electrodes. IEEE Photon. Technol. Lett. 29, 1691-1694 (2017).
293 H.-A. Chen, et al. Single-Crystal Antimonene Films Prepared by Molecular Beam Epitaxy: Selective Growth and Contact Resistance Reduction of the 2D Material Heterostructure. ACS Appl. Mater. Interfaces 10, 15058-15064 (2018).
294 G. Iannaccone, et al. Quantum engineering of transistors based on 2D materials heterostructures. Nat. Nanotechnol. 13, 183-191, doi:10.1038/s41565-018-0082-6 (2018).
295 Y.-S. Lin, et al. Nucleation engineering for atomic layer deposition of uniform sub-10 nm high-k dielectrics on MoTe2. Appl. Surf. Sci. 492, 239-244, doi:10.1016/j.apsusc.2019.06.192 (2019).
296 S. B. Mitta, et al. Electrical characterization of 2D materials-based field-effect transistors. 2D Mater. 8, doi:10.1088/2053-1583/abc187 (2020).
297 F. Yue, et al. Integrated Power Devices and TCAD Simulation (2014).
298 G. Hellings, and K. D. Meyer, High Mobility and Quantum Well Transistors Design and TCAD Simulation 42 (2013).
299 Y.-C. Wu and Y.-R. Jhan, 3D TCAD Simulation For CMOS Nanoelectronic Devices (2018).
300 B. K. Kompala, et al. Modeling of nonlinear thermal resistance in FinFETs. Jpn. J. Appl. Phys. 55, doi:10.7567/jjap.55.04ed11 (2016).
301 P. Kushwaha, et al. RF Modeling of FDSOI Transistors Using Industry Standard BSIM-IMG Model. IEEE Trans Microw Theory Tech 64, 1745-1751, doi:10.1109/tmtt.2016.2557327 (2016).
302 C. Gupta, et al. Analysis and modeling of zero-threshold voltage native devices with industry standard BSIM6 model. Jpn. J. Appl. Phys. 56, doi:10.7567/jjap.56.04cd09 (2017).
303 Y.-K. Lin, et al. Modeling of Subsurface Leakage Current in Low Short Channel MOSFET at Accumulation Bias. IEEE Trans Electron Devices 63, 1840-1845, doi:10.1109/ted.2016.2544818 (2016).
304 A. Dasgupta, et al. BSIM Compact Model of Quantum Confinement in Advanced Nanosheet FETs. IEEE Trans Electron Devices 67, 730-737, doi:10.1109/ted.2019.2960269 (2020).
305 J. Gusakova, et al. Electronic Properties of Bulk and Monolayer TMDs: Theoretical Study Within DFT Framework (GVJ-2e Method). Phys Status Solidi A Appl Mater 214, doi:10.1002/pssa.201700218 (2017).
306 R. Quhe, et al. Black phosphorus transistors with van der Waals-type electrical contacts. Nanoscale 9, 14047-14057, doi:10.1039/c7nr03941g (2017).
307 S. Haastrup, et al. The Computational 2D Materials Database: high-throughput modeling and discovery of atomically thin crystals. 2D Mater. 5, doi:10.1088/2053-1583/aacfc1 (2018).
308 R. Quhe, et al. Simulations of Quantum Transport in Sub-5-nm Monolayer Phosphorene Transistors. Phys. Rev. Appl. 10, doi:10.1103/PhysRevApplied.10.024022 (2018).
309 R. Quhe, et al. High-performance sub-10 nm monolayer Bi2O2Se transistors. Nanoscale 11, 532-540, doi:10.1039/c8nr08852g (2019).
310 E. Yang, et al. Intrinsic limit of contact resistance in the lateral heterostructure of metallic and semiconducting PtSe2. Nanoscale 12, 14636-14641, doi:10.1039/d0nr03001e (2020).
311 Y. Ding, et al. High-Performance Ballistic Quantum Transport of Sub-10 nm Monolayer GeS Field-Effect Transistors. ACS Appl. Electron. Mater. 3, 1151-1161, doi:10.1021/acsaelm.0c01019 (2021).
312 H. Zhao, et al. Quantum Transport of Sub-10 nm Monolayer WGe2N4 Transistors. ACS Appl. Electron. Mater. 3, 5086-5094, doi:10.1021/acsaelm.1c00829 (2021).
313 C. Klinkert, et al. 2-D Materials for Ultrascaled Field-Effect Transistors: One Hundred Candidates under the Ab Initio Microscope. ACS Nano 14, 8605-8615, doi:10.1021/acsnano.0c02983 (2020).
314 Z. Ni, et al. Tunable bandgap in silicene and germanene. Nano Lett. 12, 113-118, doi:10.1021/nl203065e (2012).
校內:2027-08-14公開