| 研究生: |
王俞喬 Wang, Yu-Chiao |
|---|---|
| 論文名稱: |
利用 CC2D1A 條件性基因剔除小鼠探討高脂飲食對於自閉症譜系障礙症狀表現之影響 Exploring the impact of high-fat diet on the autism spectrum disorder phenotypes in CC2D1A conditional knockout mice |
| 指導教授: |
許桂森
Hsu, Kuei-Sen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 藥理學研究所 Department of Pharmacology |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 中文 |
| 論文頁數: | 74 |
| 中文關鍵詞: | 自閉症類群障礙 、CC2D1A 、高脂飲食 、限制性重複行為 、社交行為缺陷 、米諾環素 |
| 外文關鍵詞: | Autism spectrum disorder, CC2D1A, High-fat diet, Social deficits, Minocycline |
| 相關次數: | 點閱:107 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
自閉症類群障礙,簡稱自閉症 (Autism spectrum disorder, ASD) 為一種異質性之 神經發育的障礙。根據 Diagnostic and Statistical Manual of Mental Disorders - Fifth Edition (DSM-5) 定義其特徵為患者表現限制性重複行為 (restricted repetitive behavior)、社交溝通 (social communication) 及社交互動 (social interaction) 的障礙。 近年來自閉症的診斷數量大幅地提升但治療上仍不理想,凸顯其在研究上的必要性。 自閉症的病因涉及遺傳因子 (genetic factor) 及環境因素 (environmental factor) 間複 雜的相互作用。Coiled-coil and C2 domain containing 1A ( CC2D1A) 為一種高度保留 的支架蛋白,參與在多條細胞內訊息傳遞路徑中,其缺陷被證明可能參與自閉症之發 生風險。肥胖對於自閉症發生風險的增加也呈現正相關。而高脂飲食(high-fat diet, HFD)會導致體重過重、甚至引起肥胖以及代謝功能異常。雖然知悉環境與基因兩者 分別對於自閉症的發生有關,然而高脂飲食對於因基因缺陷而預先存在 (pre-existing) 的類自閉症表型 (autistic-likephenotypes) 影響為何仍有待探討。因此,此研究的主要 研究目的為探討環境因子 (高脂飲食) 與基因 (Cc2d1a) 之“雙重因子” (two-hit) 對於 自閉症發生之影響,我們提出的假設為:相較於單純 Cc2d1a 缺失導致的自閉症症狀 表現,高脂飲食會更加惡化其症狀之表現。
在此研究中,我們依照餵食正常飲食或高脂飲食、基因型的不同進行實驗分群。 小鼠自離乳後即餵食不同飲食至實驗週齡,接著進行三大類不同的類自閉症相關行為 測試。我們主要的發現為: (1) 餵食高脂飲食的雄性 Cc2d1a 基因條件性剔除小鼠, 與表現類自閉症表型缺陷的正常飲食基因條件性剔除小鼠相比,會表現更嚴重的限制 性重複行為,例如自我梳理 (self-grooming)、挖掘 (digging) 以及檢測認知僵化的滾 動/固定滾輪測試 (running / jammed wheel test); (2) 在社交行為方面也觀察到社交新 奇性 (social novelty)、相互社交互動測試 (reciprocal social interaction test)、築巢測試 (nesting test) 出現嚴重缺損的狀況, (3) 在認知相關行為方面,包含物體易位測試 (object location memory test)、新奇事物辨識測試 (novel object recognition test)、莫氏 水迷宮 (morriswatermaze) 則未觀察到有更加惡化的影響。除此之外,攝入高脂飲食 也會導致活化態的小膠質細胞 (microglia) 和星形膠質細胞 (astrocyte) 數量增加,並 加劇了海馬迴 (hippocampus) CA1 區域中錐體神經元 (pyramidal cell) 之樹突複雜性 (dendritic complexity) 和突觸小棘數量 (spine density) 的減少。此外,我們證明了透 過長期給予半合成四環素衍生抗生素之米諾環素 (minocycline) 可去緩解餵食高脂飲 食的 Cc2d1a 基因條件性剔除小鼠觀察到的行為異常以及形態缺陷。檢視與調控神經 元型態相關之訊息條傳遞路徑,我們表明 Cc2d1a 基因條件剔除性小鼠及高脂飲食會 活化 Rac1 下游之磷酸化 PAK1-3 及 Cofilin 的活性,而米諾環素處理可以降低其 活性表現。綜合以上結果,我們的研究結果顯示高脂飲食加劇預先存在的自閉症表型 及異常神經元形態,同時也證明米諾環素可緩解這些缺陷,並提供了一種可能的作用 機制來解釋高脂飲食及米諾環素的影響。
Autism spectrum disorder (ASD) refers to a broad spectrum of neurodevelopmental disorders characterized by hallmark impairments in social communication, social interaction and restricted repetitive behaviors. The etiology of ASD involves complex interactions between genetic and environmental factors. Coiled-coil and C2 domain containing 1A (CC2D1A) is an evolutionally conserved protein and regulates multiple signaling pathways. According to previous studies, dysregulation of Cc2d1a has a causal relationship with ASD. On the other hand, obesity is associate with increased risk of ASD. High-fat diet (HFD) feeding leads to overweight, obesity, and metabolic dysfunction. Although both Cc2d1a and HFD are known to be associated with ASD, the impact of HFD on pre-existing autistic-like phenotypes remains to be elucidated. Therefore, the aim of this study is to investigate the “two-hit” (genetic load × environmental factor) theory of ASD which comparing to Cc2d1a deficit model of autism, whether HFD feeding exacerbates autistic phenotypes. In this study, mice were fed with different diets starting from weaning until experimental period. Series of different autistic-like behavioral tests were then conducted. The results showed that comparing to male Cc2d1a gene conditional knockout (cKO) mice fed with normal diet, HFD cKO mice significantly increased in restricted repetitive behaviors. Results from social behavior tests also showed worsen impairment of cKO mice after HFD feeding but didn’t influence cognitive behaviors. In addition, HFD feeding led to increased activated microglia and astrocytes in hippocampus CA1 region as well as aggravated the decrease of dendritic complexity and spines density. Importantly, chronic administration of minocycline rescued the behavioral abnormalities and morphological deficits observed in Cc2d1a cKO mice fed with HFD. Finally, elevated activity of phospho-PAK1-3 and phospho-Cofilin, downstream effector of Rac1, was observed following either Cc2d1a cKO or HFD feeding, and the effect was reversed by minocycline treatment. Taken together, our findings illustrate the role of HFD in exacerbating pre-existing autism phenotypes and abnormal morphology, also demonstrate that minocycline can alleviate the deficits, and finally providing a possible potential mechanism to explain the effects of HFD and minocycline.
Al-Tawashi A, Jung SY, Liu D, Su B, Qin J. Protein implicated in nonsyndromic mental retardation regulates protein kinase A (PKA) activity. J Biol Chem. 2012;287(18):14644-58.
Baron-Cohen S, Belmonte MK. Autism: a window onto the development of the social and the analytic brain. Annu Rev Neurosci. 2005;28:109-126.
Basel-Vanagaite L, Attia R, Yahav M, Ferland RJ, Anteki L, Walsh CA, et al. The CC2D1A, a member of a new gene family with C2 domains, is involved in autosomal recessive non-syndromic mental retardation. J Med Genet. 2006;43:203-210.
Baufeld C, Osterloh A, Prokop S, Miller KR, Heppner FL. High-fat diet-induced brain region-specific phenotypic spectrum of CNS resident microglia. Acta Neuropathol. 2016;132:361-375.
Bolis, A.; Corbetta, S.; Cioce, A.; De Curtis, I. Di↵erential distribution of Rac1 and Rac3 GTPases in the developing mouse brain: implications for a role of Rac3 in Purkinje cell di↵erentiation. Eur. J. Neurosci. 2003, 18, 2417–2424.
Brigida, A.L.; Schultz, S.; Cascone, M.; Antonucci, N.; Siniscalco, D. Endocannabinod Signal Dysregulation in Autism Spectrum Disorders: A Correlation
Brown GC, Neher JJ. Microglial phagocytosis of live neurons. Nat Rev Neurosci. 2014.15(4):209–16.
Careaga M et al. Maternal Immune Activation and Autism Spectrum Disorder: From Rodents to Nonhuman and Human Primates. Biol. Psychiatry 2017;81:391–401.
Chang CH, Lai LC, Cheng HC, Chen KR, Syue YZ, Lu HC, Lin WY, Chen SH, Huang HS, Shiau AL, Lei HY, Qin J, Ling P. TBK1-associated protein in endolysosomes (TAPE) is an innate immune regulator modu- lating the TLR3 and TLR4 signaling pathways. J Biol Chem. 2011;286:7043– 7051.
Chen JA, Peñagarikano O, Belgard TG, Swarup V, Geschwind DH. The emerging picture of autism spectrum disorder: genetics and pathology. Annu Rev Pathol. 2015;10:111-144.
Chen KR, Chang CH, Huang CY, Lin CY, Lin WY, Lo YC, Yang CY, Hsing EW, Chen LF, Shih SR, Shiau AL, Lei HY, Tan TH, Ling P TBK1-associated protein in endolysosomes (TAPE)/CC2D1A is a key regulator linking RIG-I-like receptors to antiviral immunity. J Biol Chem 2012;287:32216–32221.
Chini M, Pöpplau JA, Lindemann C, Carol-Perdiguer L, Hnida M, Oberländer V, et al. Resolving and rescuing developmental miswiring in a mouse model of cognitive impairment. Neuron. 2020;105:60-74.
Courchesne E, Pierce K, Schumann CM, Redcay E, Buckwalter JA, Kennedy DP, Morgan J: Mapping early brain development in autism. Neuron 2007, 56:399–413.
Croonenberghs, J.; Bosmans, E.; Deboutte, D.; Kenis, G.; Maes, M. Activation of the inflammatory response system in autism. Neuropsychobiology. 2002;45, 1–6.
Christensen DL et al. Prevalence and Characteristics of Autism Spectrum Disorder Among Children Aged 8 Years - Autism and Developmental Disabilities Monitoring Network, 11 Sites, United States, 2012. Morb. Mortal. Wkly. Rep. Surveill. Summ. Wash. DC 2002 65, 1–23
Dalvi PS, Chalmers JA, Luo V, Han DY, Wellhauser L, Liu Y, et al. High fat induces acute and chronic inflammation in the hypothalamus: effect of high-fat diet, palmitate and TNF-α on appetite-regulating NPY neurons. Int J Obes (Lond). 2017;41:149-158.
Dansie LE, Phommahaxay K, Okusanya AG, Uwadia J, Huang M, Rotschafer SE, et al. Long-lasting effects of minocycline on behavior in young but not adult Fragile X mice. Neuroscience. 2013;246:186-198.
Deng W, Ke H, Wang S, Li Z, Li S, Lv P, Li F, Chen Y. Metformin Alleviates Autistic-Like Behaviors Elicited by High-Fat Diet Consumption and Modulates the Crosstalk Between Serotonin and Gut Microbiota in Mice. Behav Neurol. 2022;17;2022:6711160.
Deng W, Li F, Ke H, Wang S, Li Z, Lv P, et al. Effect of metformin in autistic BTBR T + Itpr3tf/J mice administered a high-fat diet. Brain Res Bull. 2022;183:172-183.
Dong Z, Bai Y, Wu X, Li H, Gong B, Howland JG, et al. Hippocampal long-term depression mediates spatial reversal learning in the Morris water maze.
Neuropharmacology. 2013;64:65-73.
Duffney LJ, Wei J, Cheng J, Liu W, Smith KR, Kittler JT, et al. Shank3 deficiency induces NMDA receptor hypofunction via an actin-dependent mechanism. J Neurosci. 2013;33:15767–78.
Du Y, Ma Z, Lin S, et al. Minocycline prevents nigrostriatal dopaminergic neurodegeneration in the MPTP model of Parkinsons Disease. Pro Natl Acad Sci USA. 2001; 98:14669–14674.
Edlow AG. Maternal obesity and neurodevelopmental and psychiatric disorders in offspring. Prenat Diagn. 2017 Jan;37(1):95-110.
Edmonson, C., Ziats, M.N., Rennert, O.M., Altered glial marker expression in autistic post-mortem prefrontal cortex and cerebellum. Mol. Autism. 2014;5 (1),3.
Emadi-Kouchak H, Mohammadinejad P, Asadollahi-Amin A, Rasoulinejad M, Zeinoddini A, Yalda A, et al. Therapeutic effects of minocycline on mild-to moderate depression in HIV patients: a double-blind, placebo-controlled, randomized trial. Int Clin Psychopharmacol. 2016;31:20-26.
Emberti Gialloreti L, Mazzone L, Benvenuto A, Fasano A, Alcon AG, Kraneveld A, et al. Risk and protective environmental factors associated with Autism spectrum disorder: evidence-based principles and recommendations. J Clin Med. 2019;8:217.
Fernandes DJ, Spring S, Roy AR, Qiu LR, Yee Y, Nieman BJ, Lerch JP, Palmert MR. Exposure to maternal high-fat diet induces extensive changes in the brain of adult offspring. Transl Psychiatry. 2021 Mar 2;11(1):149.
Fingert S, Brazauskas K, Lindgren K, Iannuzzi D, Van Cleave J. Prevalence of overweight and obesity in a large clinical sample of children with autism. Acad Pediatr. 2014;14:408-414.
Ghafouri-Fard, S.; Noroozi, R.; Omrani, M.D.; Arsang-Jang, S.; Ganji, M.; Gharzi, V.; Noroozi, H.; Komaki, A.; Mazdeh, M. Cytokine profile in autistic patients. Cytokine 2018, 108, 120–126.
Garrido-Mesa N, Zarzuelo A, Gálvez J. Minocycline: far beyond an antibiotic. Br J Pharmacol. 2013;169:337-352.
Garwood CJ, Cooper JD, Hanger DP, Noble W. Anti-inflammatory impact of minocycline in a mouse model of tauopathy. Front Psychiatry. 2010;1:136.
Geurts HM, Corbett B, Solomon M. The paradox of cognitive flexibility in autism. Trends Cogn Sci. 2009;13:74-82.
Ghaleiha A, Alikhani R, Kazemi MR, Mohammadi MR, Mohammadinejad P, Zeinoddini A, Hamedi M, Shahriari M, Keshavarzi Z, Akhondzadeh S. Minocycline as Adjunctive Treatment to Risperidone in Children with Autistic Disorder: A Randomized, Double-Blind Placebo-Controlled Trial. J Child Adolesc Psychopharmacol. 2016;9:784-791.
Gillberg C and Fernell E. Autism plus versus autism pure. J. Autism Dev. Disord. 2014;44:3274– 3276.
Golub LM, Ramamurthy NS, McNamara TF, Greenwald RA, Rifkin BR. Tetracyclines inhibit connective tissue breakdown: new therapeutic implications for an old family of drugs. Crit Rev Oral Biol Med. 1991;2(3):297-321.
Gualdoni S, Albertinazzi C, Corbetta S, Valtorta F, de Curtis I (2007) Nor- mal levels of Rac1 are important for dendritic but not axonal development in hippocampal neurons. Biol Cell 99:455– 464.
Guo D, Yang X, Shi L. Rho GTPase Regulators and Effectors in Autism Spectrum Disorders: Animal Models and Insights for Therapeutics. Cells. 2020 Mar 31;9(4):835.
Hallmayer J, Cleveland S, Torres A, Phillips J, Cohen B, Torigoe T, et al. Genetic heritability and shared environmental factors among twin pairs with autism. Arch Gen Psychiatry. 2011;68:1095-1102.
Hariri N, Thibault L. High-fat diet-induced obesity in animal models. Nutr Res Rev. 2010;23:270-299.
Hanisch, U.K.; Kettenmann, H. Microglia: Active sensor and versatile effector cells in the normal and pathologic brain. Nat. Neurosci. 2007, 10, 1387–1394.
Heavner WE, Smith SEP. Resolving the synaptic versus developmental dichotomy of autism risk genes. Trends Neurosci. 2020;43:227-241.
Hertz-Picciotto I et al. Understanding environmental contributions to autism: Causal concepts and the state of science. Autism Res. Off. J. Int. Soc. Autism Res 2018;11:554–586 .
Hill AP, Zuckerman KE, Fombonne E. Obesity and Autism. Pediatrics. 2015;136:1051-1061.
Hinwood M, Tynan RJ, Charnley JL, Beynon SB, Day TA, Walker FR. Chronic stress induced remodeling of the prefrontal cortex: structural re-organization of microglia and the inhibitory effect of minocycline. Cereb Cortex. 2013;23:1784-1797.
Hori K, Nagai T, Shan W, Sakamoto A, Taya S, Hashimoto R, et al. Cytoskeletal regulation by AUTS2 in neuronal migration and neuritogenesis. Cell Rep. 2014;9:2166–79.
Hsiao, E. Y. & Patterson, P. H. Activation of the maternal immune system induces endocrine changes in the placenta via IL-6. Brain Behav. Immun. 2011;25, 604–615.
Hsiao, E. Y. & Patterson, P. H. Placental regulation of maternal-fetal interactions and brain development. Dev. Neurobiol. 2012;72, 1317–1326.
James AM, Collins Y, Logan A, Murphy MP. Mitochondrial oxidative stress and the metabolic syndrome. Trends Endocrinol Metab. 2012;23:429-434.
Kahathuduwa CN, West BD, Blume J, Dharavath N, Moustaid-Moussa N, Mastergeorge A. The risk of overweight and obesity in children with autism spectrum disorders: A systematic review and meta-analysis. Obes Rev. 2019;20:1667-1679.
Karvat G, Kimchi T. Systematic autistic-like behavioral phenotyping of 4 mouse strains using a novel wheel-running assay. Behav Brain Res. 2012;233:405-414.
Kempuraj D, Thangavel R, Selvakumar GP, Zaheer S, Ahmed ME, Raikwar SP, Zahoor H, Saeed D, Natteru PA, Iyer S, Zaheer A. Brain and Peripheral Atypical Inflammatory Mediators Potentiate Neuroinflammation and Neurodegeneration. Front Cell Neurosci. 2017 ;11:216.
Kichina JV, Goc A, Al-Husein B, Somanath PR, Kandel ES. PAK1 as a therapeutic target. Expert Opin Ther Targets. 2010 Jul;14(7):703-25.
Kielian, T. Multifaceted roles of neuroinflammation: the need to consider both sides of the coin. J. Neurochem. 2016;136, 5–9.
Kim YS, Leventhal BL. Genetic epidemiology and insights into interactive genetic and environmental effects in autism spectrum disorders. Biol Psychiatry. 2015;77:66-74.
Kobayashi K, Imagama S, Ohgomori T, Hirano K, Uchimura K, Sakamoto K, et al. Minocycline selectively inhibits M1 polarization of microglia. Cell Death Dis. 2013;4:e525.
Krakowiak P, Walker CK, Bremer AA, Baker AS, Ozonoff S, Hansen RL, et al. Maternal metabolic conditions and risk for autism and other neurodevelopmental disorders. J Autism Dev Disord. 2016;46:3729-3738.
Liao X, Yang J, Wang H, Li Y. Microglia mediated neuroinflammation in autism spectrum disorder. J Psychiatr Res. 2020 Nov;130:167-176.
Li M, Fallin MD, Riley A, et al. The Association of Maternal Obesity and Diabetes With Autism and Other Developmental Disabilities. Pediatrics. 2016;137(2):e20152206.
Lin YC, Frei JA, Kilander MB, Shen W, Blatt GJ. A Subset of Autism-Associated Genes Regulate the Structural Stability of Neurons. Front Cell Neurosci. 2016 Nov 17;10:263
Maenner MJ, Shaw KA, Bakian AV, Bilder DA, Durkin MS, et al. Prevalence and Characteristics of Autism Spectrum Disorder Among Children Aged 8 Years - Autism and Developmental Disabilities Monitoring Network, 11 Sites, United States, 2018. MMWR Surveill Summ. 2021 Dec 3;70(11):1-16
Manzini MC, Xiong L, Shaheen R, Tambunan DE, Di Costanzo S, Mitisalis V, et al. CC2D1A regulates human intellectual and social function as well as NF-κB signaling homeostasis. Cell Rep. 2014;8:647-655.
Matsuda A, Suzuki Y, Honda G, Muramatsu S, Matsuzaki O, Nagano Y, Doi T, Shimotohno K, Harada T, Nishida E, Hayashi H, Sugano S. Large-scale identification and characterization of human genes that activate NF-kappaB and MAPK signaling pathways. Oncogene. 2003;22:3307-18.
Millar AM, Souslova T, Albert PR. The Freud-1/CC2D1A family: multifunctional regulators implicated in mental retardation. In: Tan PU, editor. Latest findings in intellectual and developmental disabilities research. InTech; 51000 Rijeka, Croatia: 2012. pp. 279-302.
Modabbernia A, Velthorst E, Reichenberg A. Environmental risk factors for autism: an evidence-based review of systematic reviews and meta-analyses. Mol Autism. 2017;8:13.
Morgan, J.T., Chana, G., Pardo, C.A., et al., Microglial activation and increased microglial density observed in the dorsolateral prefrontal cortex in autism. Biol. Psychiatr. 2010;68 (4), 368–376.
Moser MB, Trommald M, Egeland T, Andersen P. Spatial training in a complex environment and isolation alter the spine distribution differently in rat CA1 pyramidal cells. J Comp Neurol. 1997;380:373-381.
Mossa A, Manzini MC. Molecular causes of sex-specific deficits in rodent models of neurodevelopmental disorders. J Neurosci Res. 2021;99:37-56.
Nakamura A, Naito M, Tsuruo T, Fujita N. Freud-1/Aki1, a novel PDK1-interacting protein, functions as a scaffold to activate the PDK1/Akt pathway in epidermal growth factor signaling. Mol Cell Biol. 2008;28(19):5996-6009.
Nakandakari SCBR, Muñoz VR, Kuga GK, Gaspar RC, Sant'Ana MR, Pavan ICB, et al. Short-term high-fat diet modulates several inflammatory, ER stress, and apoptosis markers in the hippocampus of young mice. Brain Behav Immun. 2019;79:284-293.
Oaks AW, Zamarbide M, Tambunan DE, Santini E, Di Costanzo S, Pond HL, et al. Cc2d1a loss of function disrupts functional and morphological development in forebrain neurons leading to cognitive and social deficits. Cereb Cortex.
2017;27:1670-1685.
Okuyama T. Social memory engram in the hippocampus. Neu- rosci Res. 2018;129:17–23.
Ou XM, Lemonde S, Jafar-Nejad H, Bown CD, Goto A, Rogaeva A, Albert PR. Freud-1: A neuronal calcium-regulated repressor of the 5-HT1A receptor gene. J Neurosci. 2003;13:7415-25
Pardo CA, Buckley A, Thurm A, Lee LC, Azhagiri A, Neville DM, et al. A pilot open-label trial of minocycline in patients with autism and regressive features. J Neurodev Disord. 2013;5:9.
Pereira AC, Lambert HK, Grossman YS, Dumitriu D, Waldman R, Jannetty SK, et al. Glutamatergic regulation prevents hippocampal-dependent age-related cognitive decline through dendritic spine clustering. Proc Natl Acad Sci USA. 2014;111:18733-18738.
Pyronneau A, He Q, Hwang JY, Porch M, Contractor A, Zukin RS. Aberrant Rac1-cofilin signaling mediates defects in dendritic spines, synaptic function, and sensory perception in fragile X syndrome. Sci Signal. 2017;10:eaan0852.
Reynolds LC, Inder TE, Neil JJ, Pineda RG, Rogers CE. Maternal obesity and increased risk for autism and developmental delay among very preterm infants. J Perinatol. 2014;34:688-692.
Satterstrom FK, Kosmicki JA, Wang J, Breen MS, Rubeis SD, An JY, et al. Large-scale exome sequencing study implicates both developmental and functional changes in the neurobiology of Autism. 2020;180:568-584.
Sandin S, Lichtenstein P, Kuja-Halkola R, Larsson H, Hultman CM, Reichenberg A. The familial risk of autism. JAMA. 2014;311:1770-1777.
Savitz JB, Teague TK, Misaki M, Macaluso M, Wurfel BE, Meyer M, et al. Treatment of bipolar depression with minocycline and/or aspirin: an adaptive, 2×2 double-blind, randomized, placebo-controlled, phase IIA clinical trial. Transl Psychiatry. 2018;8:27.
Sellgren CM, Gracias J, Watmuff B, Biag JD, Thanos JM, Whittredge PB, et al. Increased synapse elimination by microglia in schizophrenia patient-derived models of synaptic pruning. Nat Neurosci. 2019;22:374-385.
Sener EF, Cıkılı Uytun M, Korkmaz Bayramov K, Zararsiz G, Oztop DB, Canatan H, et al. The roles of CC2D1A and HTR1A gene expressions in autism spectrum disorders. Metab Brain Dis. 2016;31:613-619.
Schulz J, Franke K, Frick M, Schumacher S. Different roles of the small GTPases Rac1, Cdc42, and RhoG in CALEB/NGC-induced den- dritic tree complexity. J Neurochem 2018;139:26 –39.
Sullivan EL, Riper KM, Lockard R, Valleau JC. Maternal high-fat diet programming of the neuroendocrine system and behavior. Horm Behav. 2015;76:153-161.
Takase K, Tsuneoka Y, Oda S, Kuroda M, Funato H. High-fat diet feeding alters olfactory-, social-, and reward-related behaviors of mice independent of obesity. Obesity (Silver Spring). 2016;24:886-894.
Tanabe, K.; Tachibana, T.; Yamashita, T.; Che, Y.H.; Yoneda, Y.; Ochi, T.; Tohyama, M.; Yoshikawa, H.; Kiyama, H. The Small GTP-Binding Protein TC10 Promotes Nerve Elongation in Neuronal Cells, and Its Expression Is induced during Nerve Regeneration in Rats. J. Neurosci. 2000, 20, 4138–4144.
Troyb E, Knoch K, Herlihy L, Stevens MC, Chen CM, Barton M, et al. Restricted and repetitive behaviors as predictors of outcome in Autism spectrum disorders. J Autism Dev Disord. 2016;46:1282-1296.
Tsien JZ, Huerta PT, Tonegawa S. The essential role of hippocampal CA1 NMDA receptor-dependent synaptic plasticity in spatial memory. Cell. 1996;87(7):1327-38.
Van Spronsen M, Hoogenraad CC. Synapse pathology in psychiatric and neurologic disease. Curr Neurol Neurosci Rep. 2010;(3):207-14
Vargas DL, Nascimbene C, Krishnan C, Zimmerman AW, Pardo CA. Neuroglial activation and neuroinflammation in the brain of patients with autism. Ann Neurol. 2005 Jan;57(1):67-81.
Xu ZX, Kim GH, Tan JW, Riso AE, Sun Y, Xu EY, Liao GY, Xu H, Lee SH, Do NY, Lee CH, Clipperton-Allen AE, Kwon S, Page DT, Lee KJ, Xu B. Elevated protein synthesis in microglia causes autism-like synaptic and behavioral aberrations. Nat Commun. 2020 Apr 14;11(1):1797.
Yang CY, Hung YC, Cheng KH, Ling P, Hsu KS. Loss of CC2D1A in glutamatergic neurons results in autistic-like features in mice. Neurotherapeutics. 2021;18:2021-2039.
Yang CY, Yu TH, Wen WL, Ling P, Hsu KS. Conditional deletion of CC2D1A reduces hippocampal synaptic plasticity impairs cognitive function through Rac1 hyperactivation. J Neurosci. 2019;39:4959-4975.
Yanuck SF. Microglial Phagocytosis of Neurons: Diminishing Neuronal Loss in Traumatic, Infectious, Inflammatory, and Autoimmune CNS Disorders. Front Psychiatry. 2019 Oct 3;10:712.
Yoo H. Genetics of Autism spectrum disorder: current status and possible clinical applications. Exp Neurobiol. 2015;24:257-272.
Yrjänheikki J, Keinänen R, Pellikka M, Hokfelt T, Koistinaho J. Tetracyclines inhibit microglial activation and are neuroprotective in global brain ischemia. Proc Natl Acad Sci USA. 1998; 95:15769–15774.
Yrjänheikki J, Tikka T, Keinänen R, Goldsteins G. A tetracycline derivative, minocycline, reduces inflammation and protects against focal cerebral ischemic with a wide therapeutic window. Proc Natl Acad Sci USA. 1999; 96:13496–13500.
Zamarbide M, Mossa A, Muñoz-Llancao P, Wilkinson MK, Pond HL, Oaks AW, et al. Male-specific cAMP signaling in the hippocampus controls spatial memory deficits in a mouse model of Autism and intellectual disability. Biol Psychiatry. 2019;85:760-768.
Zamboni V, Armentano M, Berto G, Ciraolo E, Ghigo A, Garzotto D, Umbach A, DiCunto F, Parmigiani E, Boido M, Vercelli A, El-Assawy N, Mauro A, Priano L, Ponzoni L, Murru L, Passafaro M, Hirsch E, Merlo GR. HyperactivityofRac1-GTPasepathwayimpairsneuritogenesisof cortical neurons by altering actin dynamics. Sci Rep 2018;8:7254.
Zhang L, Zheng H, Wu R, Zhu F, Kosten TR, Zhang XY, et al. Minocycline adjunctive treatment to risperidone for negative symptoms in schizophrenia: Association with pro-inflammatory cytokine levels. Prog Neuropsychopharmacol Biol Psychiatry. 2018;85:69-76.
Zheng Z, Zhang L, Li S, Zhao F, Wang Y, Huang L, et al. Association among obesity, overweight and autism spectrum disorder: a systematic review and meta-analysis. Sci Rep. 2017;7:11697.
Zilkha N, Kuperman Y, Kimchi T. High-fat diet exacerbates cognitive rigidity and social deficiency in the BTBR mouse model of autism. Neuroscience. 2017;345:142-154.
Zou C, Shi Y, Ohli J, Schüller U, Dorostkar MM, Herms J. Neuroinflammation impairs adaptive structural plasticity of dendritic spines in a preclinical model of Alzheimer's disease. Acta Neuropathol. 2016;131:235-246.