簡易檢索 / 詳目顯示

研究生: 洪偉騰
Hung, Wei-Teng
論文名稱: 微生物降解土壤及污泥中戴奧辛之研究
The study of microbial degradation for dioxin in soil and sludge.
指導教授: 申永輝
Sheng, Yun-Hwei
學位類別: 博士
Doctor
系所名稱: 工學院 - 資源工程學系
Department of Resources Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 91
中文關鍵詞: 戴奧辛綠色整治厭氧液肥魚油真菌優勢菌種篩選
外文關鍵詞: Dioxin, green remediation, ultrasound-assisted, anaerobic compost tea, fish oil, Fungus, dominant strain screening
相關次數: 點閱:80下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 污染土地之整治而土壤復育,相關於複雜的地質、地下水水文、污染物傳輸及人為廢棄的等種種因素,造成整治技術困難、費用高、時間長及二次污染等問題。考量整治技術應對環境可能產生的所有衝擊,同時選擇可使場址土壤復育與整治過程的環境效益達到最大化。在規劃及執行細部工作階段,必須納入綠色環保概念等措施,並且減少廢氣、廢水與廢棄物的產生,以避免為了整治污染場址的土壤,反而惡化或破壞其他環境品質,甚至影響到人體危害健康。
    近年來,農田、河川、土壤,污泥,地下水等戴奧辛的污染是由廢棄物焚化爐、燃燒行為(垃圾、廢電纜、廢塑膠)或工業製程副產物等造成的。作為能降解戴奧辛的方法,已知有熱分解法、超臨界萃取法及溶劑萃取法等,但無論如何都需要大量的能源,成本高,複雜的裝置及操作,而最大問題是二次污染嚴重,土壤無法恢復生機。因此,為了避免二次污染且低成本地降解戴奧辛方法,陸續被開發出來:例如環境友善的液洗溶劑輔以超音波及機械攪拌法降解法、微生物降解土壤及污泥中戴奧辛等方法。經微生物降解後之土壤及污泥,能恢復原來土壤的生物活性。
    本研究採取以環境友善之液洗溶劑、真菌及微生物處理方法之非熱處理整治技術,處理受戴奧辛污染土壤及污泥,並以綠色及可持續性整治 (Green and Sustainable Remediation, GSR)之手段,更符合環境友善綠色整治,並減少空污、水污、廢棄物等二次污染環境,且更以經濟低廉以使整治得以持續順利進行,且能在短時間內降解土壤及污泥中含有戴奧辛污染物能力的方法。

    The remediation and the remediation of contaminated land involves many complicated factors such as geology, hydrology, transmission of pollutants and human abandonment, which resulted in high remediation costs and time-consuming remediation.
    To consider the remediating technology to deal with all the possible impacts of the environment, with the option of maximizing the environmental benefits of the site clean-up and remediation process. The core of remediation of contaminated land is while planning and while implementing the detailed work stage must include measures such as energy conservation and carbon reduction, and reduce the generation of waste gas, waste water and waste so as to avoid worsening or deteriorating the environmental medium for polluting the site Undermine the quality of other environmental media, affecting the overall environmental quality.
    In recent years, the pollution from dioxin such as in farmland, rivers, soils, sludge, and groundwater has been caused by waste incinerators, combustion behavior (waste, waste cables, waste plastics), or industrial process by-products.The existing methods of dioxin degrading are thermal decomposition methods, supercritical extraction methods, and solvent extraction methods.
    However, those existing methods cost a large amount of energy, high cost and complicated equipment and operations are required in any case, and the most serious problem is serious secondary pollution and soil cannot recover.
    Therefore, in order to avoid secondary pollution and cost-effective degradation of dioxin,such as The use of ultrasound-assisted anaerobic compost tea washing to remove dioxins,The microbial degradation for dioxin in soil and sludge have been developed one after another. The soil and sludge after microbial degradation can restore the original biological activity of the soil.
    This study adopts non-heat treatment technologies such as use of environmentally friendly ultrasound-assisted anaerobic compost tea washing to remove dioxins ,Fungus and microbial treatment methods. Treatment of Dioxin contaminated soil and sludge, The means of Green and Sustainable Remediation (GSR), More in line with environmental friendly green remediation, And reduce secondary pollution such as air pollution, water pollution, and waste. It is more economical and cheap so that the rectification can continue smoothly. Degradation of soil and sludge containing Dioxin contaminants in a short time.

    第一章 前言……………………………………….………………………1 1.1 研究背景………………………………………………………...…..…1 1.2 研究動機與目的………………………………..…………….…….2 第二章 理論基礎與文獻探討 ………………………………….………..…4 2.1戴奧辛……………………………………………..…......……...………4 2.1.1戴奧辛之物化特性…………………………….………………………6 2.1.2戴奧辛之生成機制…………………………………….……....…..…6 2.1.3戴奧辛之毒理特性…………………………………….……….……7 2.1.4戴奧辛之環境流佈…………………………………….………….…8 2.1.5戴奧辛對人體影響………………………………….……………….8 2.2微生物降解戴奧辛之機制……………………………...………………9 2.2.1 好氧菌………………………………………………..……….……10 2.2.2 厭氧菌……………………………………………….……..………12 2.2.3 真菌……………………………………...…………….…..…………14 2.2.4門多薩假單胞菌 (Pseudomonas mendocina NSYSU) .…..…………16 2.2.5 微生物降解影響條件……………………………….…..…………18 2.3微生物降解土壤及污泥中戴奧辛之技術……………………………23 2.3.1土壤液洗輔以超音波及機械攪拌.…………………………………..25 2.3.2液洗溶劑配方………………………………………………………32 2.3.2.1 堆肥液肥配方……………………………….……………………32 2.3.2.2 水產生漿萃取配方……………………….………………………..34 2.3.2.3魚油萃取液配方…………………………………………………34 2.3.3微生物整治方法與復育…………….………………………………..35 2.3.3.1生物堆肥處理方法………………………………….……………36 2.3.3.2生物泥漿法………………………………………….……………..38 2.3.4分子生物技術之應用………….……...…………..….……………41 2.4綠色整治及土壤永續發展介紹………………….………….………44 2.4.1 綠色整治……………………………..…………...……………………44 2.4.2 土壤永續發展………………………..………..………………………46 2.4.3 綠色整治及土壤永續發展…………………..…….…………………47 2.4.4綠色整治及土壤永續發展的願景..……….………………………51 第三章研究方法與流程……………………...……………………………53 3.1研究試驗內容........................... 53 3.2液洗溶劑降解戴奧辛污染土壤試驗................. 53 3.2.1厭氧液肥試驗................ 53 3.2.2魚油萃取液試驗................................... 53 3.3 土壤水洗篩分(Soil wet-screening) 前處理……...………..…………54 3.3.1水洗篩分標準方法……...………..……………………………...……54 3.3.2. 水洗篩分設備及材料……...…………………………..…..…………54 3.4 土壤監測項目 ............................ 55 3.5 液洗流程之試驗步驟........................... 55 3.5.1厭氧液肥液洗流程..................... 55 3.5.2魚油萃取液液洗流程........................ 58 第四章研究成果探討……………………………….….……………….…60 4.1戴奧辛污染土壤濃度粒徑分佈圖.................60 4.2土壤之化學特性................... 61 4.3液洗溶液分析............................... 62 4.4液洗結果............................... 63 4.4.1厭氧液肥液洗結果及去除效率..................... 63 4.4.2魚油萃取液液洗結果及去除效率................... 68 4.5操作成本試算.................................. 72 4.5.1液洗溶劑處理的操作成本試算.................. 72 第五章總結…………………………………………………..……..……74 5.1結論…….……..…………………………………………..……..……74 5.2建議……………..………………………………………..……..……76 參考文獻………………………….……………….………....…….…….78

    Ahn CK, Kim YM, Woo SH, Park JM Soil washing using various nonionic surfactants and their recovery by selective adsorption with activated carbon. J Hazard Mater 154(1–3):153–160(2008)
    Alaee, ME Dioxin and Related Compounds, Switzerland, Springer International Publishing pp. (2016)
    Almazán-Sánchez, P. T., Cotillas, S., Sáez, C., Solache-Ríos, M. J., Martínez-Miranda, V., Cañizares, P., Linares-Hernández, I.,& Rodrigo, M. A. Removal of pendimethalin from soil washing effluents using electrolytic and electro- irradiated technologies based on diamond anodes. Applied Catalysis B: Environmental, 213, 190–197. (2017)
    Amann, R. I., Ludwig, W., & Schleifer, K. H. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiological reviews, 59(1), 143-169. (1995).
    Amid Khodadoust,Makram T. Suidan,Carolyn M.Acheson,Richard C. Brenner, Remediation of soils contaminated with wood preserving wastes: Crosscurrent and countercurrent solvent washing. Journal of Hazardous Materials (1999)
    Anderson R, Rasor E, Van Ryn F Particle size separation via soil washing to obtain volume reduction. J Hazard Mater 66(1–2):89–98(1999)
    Asakura Y, Nishida T, Matsuoka T, Koda SEffects of ultrasonic frequency and liquid height on sonochemical efficiency of large-scale sonochemical reactors. Ultrason Sonochem 15(3):244–250 (2008)
    Aulenta et F., Majone M., Tandoi V., Enhanced anaerobic bioremediation of chlorinated solvents: environmental factors influencing microbial activity and their relevance under field conditions. J. Chem. Technol. Biotechnol. 81, 1463–1474 (2006)
    Barone, G., Giacominelli-Stuffler, R., Garofalo, R., Castiglia, D.,& Storelli, M. M. PCBs and PCDD/PCDFs in fishery products: Occurrence, congener profile and compliance with European Union legislation. Food and Chemical Toxicology, 74, 200–205. (2014).
    Birkett JW, Lester JNEndocrine disrupters in wastewater andsludge treatment processes. Lewis Pub, Boca Raton (2003)
    Boening DW Toxicity of 2,3,7,8-tetrachlorodibenzo-p-dioxin to several ecological receptor groups: a short review. Ecotoxicol Environ Saf 39(3):155–163(1998)
    Bhandari, A., Dove, D. C., and Novak, J. T., Soil Washing and Biotreatment of Petroleum-Contaminated Soils, Journal of Environmental Engineering, 120(5),pp. 1151-1169 (1994)
    Billy J. Cochran, William A. Carney, H. Rouse Caffey, and Jack L. Bagent , Basic Principles of Composting, LSU Ag. Center, Pub. 2622.
    Bragato, M.,El Seoud, O.A., Formation, properties, and"ex situ"soil decontamination by vegetable. Journal of Surfactants and Detergents 6(2):143-150 (2003)
    Bunge, M., Ballerstedt, H., & Lechner, U., Regiospecific dechlorination of spiked tetra- and trichlorodibenzo-p-dioxins by anaerobic bacteria from PCDD/F-contaminated Spittelwasser sediments. Chemosphere, 43(4–7), 675-681 (2001)
    Bunge, M., Adrian, L., Kraus, A., Opel, M., Lorenz, W. G., Andreesen, J. R. & Lechner,U., Reductive dehalogenation of chlorinated dioxins by an anaerobic bacterium. Nature, 421(6921), 357-360 (2003)
    Cao M, Ye Y, Chen J, Lu X Remediation of arsenic contaminated soil by coupling oxalate washing with subsequent ZVI/Air treat- ment. Chemosphere 144:1313–1318(2016)
    Chan KH, Chu W., Effect of humic acid on the photolysis of the pesticide atrazine in a surfactant-aided soil-washing system in acidic condition. Water Res, 39(10):2154-66 (2005)
    Chang, H. J., Wang, S., Li, H. W., Lin, K. H., Chao, C. C., & Lai,Y. C. Polychlorinated dibenzo-p-dioxins and diben- zofuran contents in fish and sediment near a pentachlorophe- nol contaminated site. Journal of Environmental Science and Health. Part A, Toxic/Hazardous Substances & Environmental Engineering, 45(8), 923–931. (2010).
    Chen, W. Y., Wu, J. H., Lin, Y. Y., Huang, H. J., & Chang, J. E., Bioremediation potential of soil contaminated with highly substituted polychlorinated dibenzo-p-dioxins and dibenzofurans: Microcosm study and microbial community analysis. Journal of Hazardous Materials, 261(0), 351-361 (2013)
    Chitsan Lin, Ta-Chen Lin, Wen-Ming Mao, Chun-Lan Huang, Der-Shyan Sheu., Jimmy C. M. Kao, Application of Food Waste Composting Process for the Treatment of Diesel Contaminated Soil, Paper Presented at The 2nd International Conference on Environmental Science and Technology, IPCBEE vol.6, Singapore (2011)
    Chen F, Tan M, Ma J, Li G, Qu J Restoration of manufactured gas plant site soil through combined ultrasound-assisted soil washing and bioaugmentation. Chemosphere 146:289–299(2016)
    Cheng SF, Chang JH, Huang CY Particle separation to enhance the efficiency of soil acid washing—case study on the removal of cadmium from contaminated soil in southwestern Taiwan. Environ Technol 28(10):1163–1171 (2007)
    Collings AF, Farmer AD, Gwan PB, Pintos APS, Leo CJ Processing contaminated soils and sediments by high power ultra- sound. Miner Eng 19(5):450–453(2006)
    Conte P, Zena A, Pilidis G, Piccolo A Increased retention of polycyclic aromatic hydrocarbons in soils induced by soil treatment with humic substances. Environ Pollut 112(1):27–31(2001)
    Conte P, Agretto A, Spaccini R, Piccolo A Soil remediation: hu- mic acids as natural surfactants in the washings of highly contami- nated soils. Environ Pollut 135(3):515–522(2005)
    Czerwinski F The generation of Mg–Al–Zn alloys by semisolid state mixing of particulate precursors. Acta Mater 52(17):5057– 5069(2004a)
    Czerwinski F) Magnesium alloy particulates for Thixomolding applications manufactured by rapid solidification. Mater Sci Eng A 367(1–2):261–271 (2004b)
    Dadrasnia et al., Dadrasnia, A., & Agamuthu, P., Enhanced degradation of diesel-contaminated soil using organic wastes. Malaysian Journal of Science, 29(3), 225-230 (2010)
    Diemme, Soil Washing Plants, http://www.image.unipd.it/iat/Raga/Remediation2008-09/Presentations/42-19Jan09-Collini-Soilwashing.pdf (2009)
    Farhadian M, Vachelard C, Duchez D, et al. In situ bioremediation of monoaromatic pollutants in groundwater: A review. Bioresource Technology Journal, 99, 5296–5308 (2008)
    Fava F, Piccolo A Effects of humic substances on the bioavail- ability and aerobic biodegradation of polychlorinated biphenyls in a model soil. Biotechnol Bioeng 77(2):204–211 (2002)
    Feng D, Aldrich C Sonochemical treatment of simulated soil con- taminated with diesel. Adv Environ Res 4(2):103–112 (2000)
    Fennell, D. E., Du, S., Liu, F., Liu, H., & Häggblom, M. M., 6.13-Dehalogenation of Polychlorinated Dibenzo-p-Dioxins and Dibenzofurans, Polychlorinated Biphenyls, and Brominated Flame Retardants, and Potential as a Bioremediation Strategy. In M. Moo-Young (Ed.), Comprehensive Biotechnology (Second Edition), 135-149 (2011)
    Field, J. A., & Sierra-Alvarez, R., Microbial degradation of chlorinated dioxins. Chemosphere, 71(6), 1005-1018 (2008)
    Field and Sierra-Alvarez, Field J A, Sierra-Alvarez R. (2008) Microbial degradation of chlorinated dioxins. Chemosphere 71:1005–1018. ( 2008)
    Freeman H.M. & Harris E.F. (eds.)., Hazardous Waste Remediation, Innovative Treatment Technologies, Technomic Publishing Company, Inc., Lancaster (PA), USA, (1995)
    Federal Remediation Technologies Roundtable (FRTR), Remediation Technologies Screening Matrix and Reference Guide, Version 4.0 (2015)
    Gogate PR, Mujumdar S, Pandit ABLarge-scale sonochemical reactors for process intensification: design and experimental valida- tion. J Chem Technol Biotechnol 78(6):685–693 (2003)
    Gogate PR, Sutkar VS, Pandit AB Sonochemical reactors: impor- tant design and scale up considerations with a special emphasis on heterogeneous systems. Chem Eng J 166(3):1066–1082(2011)
    Habe H, Ide K, Yotsumoto M, Tsuji H, Hirano H, Widada J, Yoshida T, Nojiri H, Omori T Preliminary examinations for applying a carbazole-degrader, Pseudomonas sp strain CA10, to dioxin- contaminated soil remediation. Appl Microbiol Biotechnol 56(5– 6):788–795(2001)
    Hanano, A., Ammouneh, H., Almousally, I., Alorr, A., Shaban, M., Alnaser, A. A., & Ghanem, I., Traceability of polychlorinated dibenzo-dioxins/furans pollutants in soil and their ecotoxicological effects on genetics, functions and composition of bacterial community. Chemosphere, 108(0), 326-333 (2014)
    Harjanto S, Kasai E, Terui T, Nakamura T Behavior of dioxin during thermal remediation in the zone combustion process. Chemosphere 47(7):687–693(2002)
    Hasegawa, J., Guruge, K. S., Seike, N., Shirai, Y., Yamata, T., Nakamura, M., Handa, H., Yamanaka, N., & Miyazaki, S. Determination of PCDD/Fs and dioxin-like PCBs in fish oils for feed ingredients by congener-specific chemical analysis and CALUX bioassay. Chemosphere, 69(8), 1188– 1194. (2007).
    Hazen, T. C., Chakraborty, R., Fleming, J. M., Gregory, I. R., Bowman, J. P., Jimenez, L., Zhang, D., Pfiffner, S. M., Brockman, F. J., & Sayler, G. S. Use of gene probes to assess the impact and effectiveness of aerobic in situ bioremediation of TCE. Archives of microbiology, 191(3), 221-232. (2009).
    Holman H-YN, Nieman K, Sorensen DL, Miller CD, Martin MC, Borch T, Mckinney WR, Sims RC Catalysis of PAH biodegradation by humic acid shown in synchrotron infrared studies. Environ Sci Technol 36(6):1276–1280(2002)
    Hosoya, K., Kimata, K., Fukunishi, K., Tanaka, N., Patterson Jr.,G., Alexander, L. R., Barnhart, E. R., & Barr, J. Photodecomposition of 1,2,3,4- and 2,3,7,8- tetrachlorodibenzo-p-dioxin (TCDD) in water-alcohol media on a solid support. Chemosphere, 31(7), 3687–3698. (1995).
    Head E, Callahan H, Muggenburg BA, Cotman CW, Milgram NW., Visual discrimination learning ability and β-amyloid accumulation in the dog, Neurobiol Aging, 19, 415-525 (1998)
    Holliger, P., Riechmann, L., & Williams, R. L., Crystal structure of the two N-terminal domains of g3p from filamentous phage fd at 1.9 Å: evidence for conformational lability1. Journal of Molecular Biology, 288(4), 649-657 (1999)
    Huang, C., Van Benschoten, J. E., Healy, T. C., and Ryan, M.E., Feasibility Study of Surfactant Use for Remediation of Organic and Metal Contaminated Soils, Journal of Soil Contamination, 6:5, 537-556 (1997)
    Huang R, Huang K-L, Lin Z-Y, Wang J-W, Lin C, Kuo Y-MRecovery of valuable metals from electroplating sludge with reduc- ing additives via vitrification. J Environ Manag 129:586–592 (2013)
    Huang WY, Hung WT, Vu CT, Chen WT, Lai JW, Lin CT Green and sustainable remediation (GSR) evaluation: framework, stan- dards, and tool. A case study in Taiwan. Environ Sci Pollut Res 23(21):21712–21725 (2016)
    Hung, P.-C., Chang, S.-H., Ou-Yang, C.-C., & Chang, M.-B. Simultaneous removal of PCDD/Fs, pentachlorophe- nol and mercury from contaminated soil. Chemosphere, 144, 50–58. (2016).
    Hung, W, Huang, W-Y, Lin, C, Vu, CT, Yotapukdee, S, Kaewlaoyoong, A, Chen, J-R and Shen, Y-H, The use of ultrasound-assisted anaerobic compost tea washing to remove poly-chlorinated dibenzo-p-dioxins (PCDDs), dibenzo-furans (PCDFs) from highly contaminated field soils, Environmental Science and Pollution Research.(2017)
    Hsueh KA, Chang FC, Wang HP, Wang HC, Huang YJ, Huang HL, Tuan YJ Enhanced extraction of PAHs hindered in fly ashes with supercritical water. J Supercrit Fluids 73:116–119(2013)
    Impellitteri CA, Lu Y, Saxe JK, Allen HE, Peijnenburg WJGM Correlation of the partitioning of dissolved organic matter fractions with the desorption of Cd, Cu, Ni, Pb and Zn from 18 Dutch soils. Environ Int 28(5):401–410(2002)
    Ishii, K., Furuichi, T., Tanikawa, N., & Kuboshima, M., Estimation of the biodegradation rate of 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin by using dioxin-degrading fungus, Pseudallescheria boydii. Journal of hazardous materials, 162(1), 328-332 (2009)
    Islam MN, Jo Y-T, Park J-H Remediation of PAHs contaminated soil by extraction using subcritical water. J Ind Eng Chem 18(5): 1689–1693(2012)
    Isosaari, P., Tuhkanen, T., & Vartiainen, T., Use of olive oil for soil extraction and ultraviolet degradation of polychlorinated dibenzo-p-dioxins and dibenzofurans. Environmental Science & Technology, 35(6), 1259-1265 (2001)
    Janzen RA, Xing B, Gomez CC, Salloum MJ, Drijber RA, Mcgill WB Compost extract enhances desorption of α-naphthol and naphthalene from pristine and contaminated soils. Soil Biol Biochem 28(8):1089–1098(1996)
    Jonsson S, Lind H, Lundstedt S, Haglund P, Tysklind M Dioxin removal from contaminated soils by ethanol washing. J Hazard Mater 179(1–3):393–399(2010)
    Jo-Shu Chang, C-C Lai, Y-C Huang, Y-H Wei, Biosurfactant-enhanced removal of total petroleum hydrocarbons (TPH) from contaminated soil, Journal of Hazardous Materials, 609-614 (2009)
    Jung, J., Yang, J.-S., Kim, S.-H., & Yang, J.-W. Feasibility of micellar-enhanced ultrafiltration (MEUF) or the heavy metal removal in soil washing effluent. Desalination, 222(1), 202–211. (2008).
    Kapp RW Jr CERCLA; revised as the superfund amendments reauthorization act (SARA). In: WEXLER P (ed) Encyclopedia of toxicology (third edition). Academic Press, Oxford(2014)
    Karl A. P. Payne, Carolina P. Quezada, Karl Fisher, Mark S. Dunstan, Fraser A. Collins, Hanno Sjuts, Colin Levy, Sam Hay, Stephen E.J. Rigby & David Leys Reductive dehalogenase structure suggest a mechanism for B12-dependent dehalogenation. Nature. Vol. 517: 513-516(2015)
    Kasai E, Harjanto S, Terui T, Nakamura T, Waseda Y Thermal remediation of PCDD/Fs contaminated soil by zone combustion process. Chemosphere 41(6):857–864(2000)
    Khodadoust AP, Suidan MT, Acheson CM, Brenner RC Solvent extraction of pentachlorophenol from contaminated soils using wa- ter-ethanol mixtures. Chemosphere 38:2681–2693(1999)
    Khodadoust AP, Bagchi R, Suidan MT, Brenner RC, Sellers NG Removal of PAHs from highly contaminated soils found at prior manufactured gas operations. J Hazard Mater 80(1–3):159–174(2000)
    Kim Y, Lee D Solubility enhancement of PCDD/F in the presence of dissolved humic matter. J Hazard Mater 91(1–3):113–127 (2002)
    Kittelmann, S., Devente, S. R., Kirk, M. R., Seedorf, H., Dehority, B.A., Janssen, P. H. Phylogeny of Intestinal Ciliates, Including Charonina ventriculi, and Comparison of Microscopy and 18S rRNA Gene Pyrosequencing for Rumen Ciliate Community Structure Analysis. Applied and environmental microbiology, 81(7), 2433-2444. (2015).
    Kim, Y. J., Lee, D. H., & Osako, M. Effect of dissolved humic matters on the leachability of PCDD/F from fly ash— laboratory experiment using Aldrich humic acid. Chemosphere, 47(6), 599–605 (2002).
    Kresinova, Z., Moeder, M., Ezechias, M., Svobodova, K., & Cajthaml, T., Mechanistic study of 17α-ethinylestradiol biodegradation by Pleurotus ostreatus: tracking of extracelullar and intracelullar degradation mechanisms. Environmental science & technology, 46(24), 13377-13385 (2012)
    Kulkarni PS, Crespo JG, Afonso CAM Dioxins sources and cur- rent remediation technologies—a review. Environ Int 34(1):139– 153(2008)
    Kunichika Nakamiya., Tohru Furuichi., Kazuei Ishii., Evaluation of the optimal washing conditions for dioxin-contaminated soils from the circumference of an incinerator. (2003)
    Kuokka S, Rantalainen AL, Häggblom MM Anaerobic reductive dechlorination of 1,2,3,4-tetrachlorodibenzofuran in polychlorinated dibenzo-p-dioxin- and dibenzofuran-contaminated sediments of the Kymijoki River, Finland. Chemosphere 98:58–65 (2014)
    Lalande, J., Villemur, R., & Deschênes, L. (2013). A New Framework to Accurately Quantify Soil Bacterial Community Diversity from DGGE. Microbial ecology, 1-12. (2013)
    Laha S, Tansel B, Ussawarujikulchai A Surfactant–soil interac- tions during surfactant-amended remediation of contaminated soils by hydrophobic organic compounds: a review. J Environ Manag 90(1):95–100(2009)
    Langwaldt JH, Puhakka JA., On-site biological remediation of contaminated groundwater: a review. Environ Pollut, 109(2), 353-4 (2000)
    Lee C-C, Guo YL, Kuei C-H, Chang H-Y, Hsu J-F, Wang S-T, Liao P-C Human PCDD/PCDF levels near a pentachlorophenol con- tamination site in Tainan, Taiwan. Chemosphere 65(3):436–448(2006)
    Lee, M. H., Clingenpeel, S. C., Leiser, O. P., Wymore, R. A., Sorenson Jr, K. S., & Watwood, M. E. (2008). Activity-dependent labeling of oxygenase enzymes in a trichloroethene-contaminated groundwater site. Environmental Pollution,153(1), 238-246(2012)
    Liao, PY, Liu, CW and Liu, WY, Bioaccumulation of mer- cury and polychlorinated dibenzo-p-dioxins and dibenzofu- rans in salty water organisms, Environmental Monitoring and Assessment, vol. 188, no. 1. (2016)
    Liao X, Li Y, Yan X Removal of heavy metals and arsenic from a co-contaminated soil by sieving combined with washing process. J Environ Sci(2015)
    Li, H., Qu, R., Li, C., Guo, W., Han, X., He, F., Ma, Y., & Xing, B. Selective removal of polycyclic aromatic hydrocar- bons (PAHs) from soil washing effluents using biochars produced at different pyrolytic temperatures. Bioresource Technology, 163, 193–198.(2014)
    Lin C A negative-pressure aeration system for composting food wastes. Bioresour Technol 99(16):7651–7656(2008)
    Lin CT, Sheu DS, Lin TC, Kao CM, Grasso D Thermophilic biodegradation of diesel oil in food waste composting processes without bioaugmentation. Environ Eng Sci 29(2):117–123 (2012)
    Lin C, Wei CC, Tsai CC Prediction of influential operational compost parameters for monitoring composting process. Environ Eng Sci 33(7):494–506 (2016)
    Lin, D. Y., Shy, C. G., Chen, F. A., Wang, Y. F., Chen, K. C.,Hsieh, L. T., Tsai, F. Y., Tsou, T. C., & Chao, H. R. Use of a highly sensitive recombinant hepatoma cell method to determine dioxin concentrations in samples of fish and crab from a hotspot area. Environ Sci Process Impacts, 15(6), 1264–1270. (2013).
    MendozaCantu, A., Albores, A., FernandezLinares, L., & RodriguezVazquez, R., Pentachlorophenol biodegradation and detoxification by the whiterot fungus Phanerochaete chrysosporium. Environmental Toxicology, 15(2), 107-113 (2000)
    Mino, Y., Moriyama, Y., & Nakatake, Y. Degradation of 2, 7-dichlorodibenzo-p-dioxin by Fe3+−H2O2 mixed reagent.Chemosphere, 57(5), 365–372. (2004).
    Mitrou PI, Dimitriadis G, Raptis SA Toxic effects of 2,3,7,8- tetrachlorodibenzo-p-dioxin and related compounds. Eur J Intern Med 12(5):406–411 (2001)
    Nakamiya, K., Furuichi, T., & Ishii, K. Evaluation of the optimal washing conditions for dioxin-contaminated soils from the circumference of an incinerator. Journal of Material Cycles and Waste Management, 5(1), 0063–0068 (2003).
    Nam, I. H., Hong, H. B., Kim, Y. M., Kim, B. H., Murugesan, K., & Chang, Y. S., Author's reply to comment on Biological removal of polychlorinated dibenzo-p-dioxins from incinerator fly ash by sphingomonas wittichii RW1 by Rolf U. Halden. Water Research, 40(11), 2246-2247 (2006)
    Onotri, L., Race, M., Clarizia, L., Guida, M., Alfè, M., Andreozzi, R., & Marotta, R. Solar photocatalytic processes for treatment of soil washing wastewater. Chemical Engineering Journal, 318, 10–18. (2017).
    Pancon ART Engineering, HYDROCARBON SOIL WASHING / SOIL FLUSHING REMEDIATION, http://www.art-engineering.com/Projects/Lezo/Hydrocarbon-Soil-Washing-Spain.htm
    Pannu, J. K., Singh, A., & Ward, O. P., Vegetable oil as a contaminated soil remediation amendment: Application of peanut oil for extraction of polycyclic aromatic hyd rocarbons from soil, Process Biochemistry, 39(10), 1211-1216 (2004)
    Pant AP, Radovich TJK, Hue NV, Paull RE Biochemical proper- ties of compost tea associated with compost quality and effects on pak choi growth. Sci Hortic 148:138–146 (2012)
    Park B, Son Y Ultrasonic and mechanical soil washing processes for the removal of heavy metals from soils. Ultrason Sonochem 35(Part B):640–645(2017)
    Ping L, Luo Y, Wu L, Qian W, Song J, Christie P., Phenanthrene adsorption by soils treated with humic substances under different pH and temperature conditions. Environ Geochem Health, 28(1-2), 189-95 (2006)
    Peng S, Wu W, Chen J Removal of PAHs with surfactant- enhanced soil washing: influencing factors and removal effective- ness. Chemosphere 82(8):1173–1177(2011)
    Perelo LW., Review: In situ and bioremediation of organic pollutants in aquatic sediments. J Hazard Mater, 177(1-3),81-9 (2010)
    Perlatti, B., da Silva, M. F. d. G. F., Fernandes, J. B., & Forim, M. R., Biodegradation of 1,2,3,4-tetrachlorodibenzo-p-dioxin in liquid broth by brown-rot fungi. Bioresource Technology, 148(0), 624-627 (2013)
    Qin, J., Li, R., Raes, J., Arumugam, M., Burgdorf, K.S., Manichanh, C., & Weissenbach, J. (2010). A human gut microbial gene catalogue established by metagenomic sequencing. Nature, 464(7285), 59-65. Jennings, L. K., Giddings, C. G., Gossett, J. M., & Spain, J. C. Bioaugmentation for Aerobic Degradation of CIS-1, 2-Dichloroethene. In Bioaugmentation for Groundwater Remediation, 199-217. (2013)
    Richard, T., The effect of lignin on biodegradability. Cornell Composting, Cornel Waste Management Institute, In http://www. cfe. cornell. edu/compost/calc/lignin.html(1996)
    Ritalahti, K. M., Amos, B. K., Sung, Y., Wu, Q., Koenigsberg, S. S., & Löffler, F. E. Quantitative PCR targeting 16S rRNA and reductive dehalogenase genes simultaneously monitors multiple Dehalococcoides strains. Applied and Environmental Microbiology, 72(4), 2765-2774. (2006).
    Demeter, M. A., Lemire, J., Golby, S., Schwering, M., Ceri, H., & Turner, R.J. Cultivation of Environmental Bacterial Communities as Multispecies Biofilms. (2015).
    Sahle-Demessie, E., Grosse, D. W., & Bates, E. R. Solvent extraction and soil washing treatment of contaminated soils from wood preserving sites: Bench-scale studies. Remediation Journal, 10(3), 85–109. (2000).
    Satyro, S., Race, M., Di Natale, F., Erto, A., Guida, M., & Marotta,R. Simultaneous removal of heavy metals from field- polluted soils and treatment of soil washing effluents through combined adsorption and artificial sunlight-driven photocat- alytic processes. Chemical Engineering Journal, 283, 1484– 1493. (2016).
    Sany SBT, Hashim R, Rezayi M, Rahman MA, Razavizadeh BBM, Abouzari-Lotf E, Karlen DJ Integrated ecological risk as- sessment of dioxin compounds. Environ Sci Pollut Res 22(15): 11193–11208(2015a)
    Sany SBT, Hashim R, Salleh A, Rezayi M, Karlen DJ, Razavizadeh BBM, Abouzari-Lotf E Dioxin risk assessment: mecha- nisms of action and possible toxicity in human health. Environ Sci Pollut Res 22(24):19434–19450(2015b)
    Sato, A., Watanabe, T., Watanabe, Y., Harazono, K., & Fukatsu, T., Screening for basidiomycetous fungi capable of degrading 2,7-dichlorodibenzo-p-dioxin. FEMS microbiology letters, 213(2), 213-217 (2002)
    Schreiner, G., Wiedmann, T., Schimmel, H., & Ballschmitter, K., Infuence of the substitution pattern on the microbial degradation of mono- to tetrachlorinated dibenzo-p-dioxins and dibenzofurans. Chemosphere 34, 1315-1331 (1997)
    Sheets RG, Bergquist BA Laboratory treatability testing of soils contaminated with lead and PCBs using particle-size separation and soil washing. J Hazard Mater 66(1–2):137–150(1999)
    Singh DN, Shah PH A simple methodology for determining elec- trical conductivity of soils. J ASTM Int 1(5) (2004)
    Smidt, H., Akkermans, A. D. L., van der Oost, J., de Vos, W. M., Halorespiring bacteria–molecular characterization and detection. Enzyme and Microbial Technology, 27(10), 812-820 (2000)
    Son Y, Cha J, Lim M, Ashokkumar M, Khim J Comparison of ultrasonic and conventional mechanical soil-washing processes for diesel-contaminated sand. Ind Eng Chem Res 50(4):2400–2407(2011)
    Son Y, Nam S, Ashokkumar M, Khim J Comparison of energy consumptions between ultrasonic, mechanical, and combined soil washing processes. Ultrason Sonochem 19(3):395–398(2012)
    Sponza DT, Gök O Effect of rhamnolipid on the aerobic removal of polyaromatic hydrocarbons (PAHs) and COD components from petrochemical wastewater. Bioresour Technol 101(3):914–924 (2010)
    Sponza DT, Oztekin R Removals of some hydrophobic poly aro- matic hydrocarbons (PAHs) and Daphnia magna acute toxicity in a petrochemical industry wastewater with ultrasound in Izmir-Turkey. Sep Purif Technol 77(3):301–311 (2011)
    Stalling DL, Norstrom RJ, Smith LM, Simon M Patterns of PCDD, PCDF, and PCB contamination in Great Lakes fish and birds and their characterization by principal components analysis. Chemosphere 14(6–7):627–643(1985)
    Sun XL, Kido T, Honma S, Okamoto R, Manh HD, Maruzeni S, Nishijo M, Nakagawa H, Nakano T, Koh E, Takasuga T, Nhu DD, Hung NN, Son LK Influence of dioxin exposure upon levels of prostate-specific antigen and steroid hormones in Vietnamese men. Environ Sci Pollut Res 23(8):7807–7813(2016)
    Suominen, K., Hallikainen, A., Ruokojärvi, P., Airaksinen, R., Koponen, J., Rannikko, R., & Kiviranta, H. Occurrence of PCDD/F, PCB, PBDE, PFAS, and organotin compounds in fish meal, fish oil and fish feed. Chemosphere, 85(3), 300–306. (2011)
    Tachibana, S., Kiyota, Y., & Koga, M., Bioremediation of dioxin-contaminated soil by fungi screened from nature. Pakistan Journal of Biological Sciences, 10(3),486-491 (2007)
    Takada, S., Nakamura, M., Matsueda, T., Kondo, R., & Sakai, K., Degradation of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans by the white rot fungus Phanerochaete sordida YK-624. Appl. Environ. Microbiol. 62, 4323-4328 (1996)
    Takashi Narihiro and Akira Hiraishi, Bioremediation of dioxin polluted soil in solid-phase bioreactors, Department of Eco-logical Engineering, Toyohashi University of Technology, Toyohashi, Japan (2004)
    Takeda N, Takaoka M An assessment of dioxin contamination from the intermittent operation of a municipal waste incinerator in Japan and associated remediation. Environ Sci Pollut Res 20(4): 2070–2080 (2013)
    Tanaka F, Fukushima M, Kikuchi A, Yabuta H, Ichikawa H, Tatsumi K Influence of chemical characteristics of humic substances on the partition coefficient of a chlorinated dioxin. Chemosphere 58(10):1319–1326(2005)
    Trellu C, Mousset E, Pechaud Y, Huguenot D, Van Hullebusch ED, Esposito G, Oturan MA Removal of hydrophobic organic pollutants from soil washing/flushing solutions: a critical review. J Hazard Mater 306:149–174 (2016)
    Tuyet-Hanh TT, Minh NH, Vu-Anh L, Dunne M, Toms L-M, Tenkate T, Thi M-HN, Harden F Environmental health risk assessment of dioxin in foods at the two most severe dioxin hot spots in Vietnam. Int J Hyg Environ Health 218(5):471–478(2015)
    USEPA, EPA 542/B-93/012:Innovative Site Remediation Technology -Soil Washing/ Soil Flushing Vol. 3 (1993)
    USEPA Method 8290A—polychlorinated dibenzodioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs) by high-resolution gas chromatography/high-resolution mass spectrometry (HRGC/HRMS), United States Environmental Protection Agency, Washington, DC. https://www.epa. gov/sites/production/files/2015-07/documents/epa-8290a. pdf. Accessed 16 Mar 2017(1994)
    USEPA, Method 3630C—silica gel cleanup, United States Environmental Protection Agency, Washington, DC. https://www.epa.gov/hw-sw846/sw-846-test-method-3630c- silica-gel-cleanup. Accessed 16 Mar 2017(1996)
    USEPA, Method 3550C—ultrasonic extraction, United States Environmental Protection Agency, Washington, DC. https://www.epa.gov/sites/production/files/2015-12/documents/3550c.pdf. Accessed 16 Mar 2017. (2007)
    Ukisu Y, Miyadera T Hydrogen-transfer hydrodechlorination of polychlorinated dibenzo-p-dioxins and dibenzofurans catalyzed by supported palladium catalysts. Appl Catal B Environ 40(2):141–149 Vallejo M, Fresnedo San Román M, Ortiz I, Irabien A (2015) Overview of the PCDD/Fs degradation potential and formation risk in the application of advanced oxidation processes (AOPs) to wastewater treatment. Chemosphere 118:44–56(2003)
    Ukisu, Y., & Miyadera, T. Dechlorination of dioxins with supported palladium catalysts in 2-propanol solution. Applied Catalysis A: General, 271(1–2), 165–170(2004).
    Valenti, M., Recovering Heavy Metals, Mechanical Engineering, December, 54-58 (1992)
    Valli K, Wariishi H, Gold MH., Degradation of 2,7-dichlorodibenzopara-dioxin by the lignin-degrading basidiomycete Phanerochaete chrysosporium. J. Bacteriol 174:2131–2137 (1992)
    Vallejo, M., Roman, M. F. S., Ortiz, I., & Irabien, A. Overview of the PCDD/Fs degradation potential and forma- tion risk in the application of advanced oxidation processes (AOPs) to wastewater treatment. Chemosphere, 118, 44–56. (2015).
    Van Den Berg M, Birnbaum L, Bosveld ATC, Brunstrom B, Cook P, Feeley M, Giesy JP, Hanberg A, Hasegawa R, Kennedy SW, Kubiak T, Larsen JC, Van Leeuwen FXR, Liem AKD, Nolt C, Peterson RE, Poellinger L, Safe S, Schrenk D, Tillitt D, Tysklind M, Younes M, Waern F, Zacharewski T Toxic equivalency factors (TEFs) for PCBs, PCDDs, PCDFs for humans and wildlife. Environ Health Perspect 106(12):775–792(1998)
    Van Den Berg M, Birnbaum LS, Denison M, De Vito M, Farland W, Feeley M, Fiedler H, Hakansson H, Hanberg A, Haws L, Rose M, Safe S, Schrenk D, Tohyama C, Tritscher A, Tuomisto J, Tysklind M, Walker N, Peterson RE The 2005 World Health Organization reevaluation of human and mammalian toxic equiva- lency factors for dioxins and dioxin-like compounds. Toxicol Sci 93(2):223–241(2006)
    Vieira Dos Santos, E., Sáez, C., Cañizares, P., Martínez-Huitle, C. A., & Rodrigo, M. A. Treating soil-washing fluids polluted with oxyfluorfen by sono-electrolysis with diamond anodes. Ultrasonics Sonochemistry, 34, 115–122. (2017).
    Viglianti C, Hanna K, De Brauer C, Germain P Removal of poly- cyclic aromatic hydrocarbons from aged-contaminated soil using cyclodextrins: experimental study. Environ Pollut 140(3):427–435(2006)
    Yu, Y., Li, Y., Shen, Z., Yang, Z., Mo, L., Kong, Y., & Lou, I., Occurrence and possible sources of organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs) along the Chao River, China. Chemosphere, 114, 136-143 (2014)
    Wang P, Keller AA Particle-size dependent sorption and desorp- tion of pesticides within a water−soil−nonionic surfactant system. Environ Sci Technol 42(9):3381–3387(2008)
    Wang M, Liu GR, Jiang XX, Xiao K, Zheng MH Formation and potential mechanisms of polychlorinated dibenzo-p-dioxins and di- benzofurans on fly ash from a secondary copper smelting process. Environ Sci Pollut Res 22(11):8747–8755(2015)
    Weitzman, L. On-site removal of PCB and dioxins from soils. USA patent application US 06/675,823. 5/5/1987. (1984)
    Xiao N, Liu R, Jin C, Dai Y Efficiency of five ornamental plant species in the phytoremediation of polycyclic aromatic hydrocarbon (PAH)-contaminated soil. Ecol Eng 75:384–391 (2015)
    Yang HY, Jia RB, Chen B, Li L Degradation of recalcitrant ali- phatic and aromatic hydrocarbons by a dioxin-degrader Rhodococcus sp strain p52. Environ Sci Pollut Res 21(18):11086– 11093(2014)
    Zhang F, Chen J, Zhang H, Ni Y, Zhang Q, Liang X Dechlorination of dioxins with Pd/C in ethanol–water solution under mild conditions. Sep Purif Technol 59(2):164–168(2008)
    Zhang Y-f, Liu Y-b, Cao Z-y, Zhang L Microstructure transforma- tion of deformed AZ91D during isothermal holding. Trans Nonferrous Metals Soc China 20(1):14–21(2010)
    Zhao D, Zheng Y, Li M, Baig SA, Wu D, Xu X Catalytic dechlo- rination of 2,4-dichlorophenol by Ni/Fe nanoparticles prepared in the presence of ultrasonic irradiation. Ultrason Sonochem 21(5): 1714–1721 (2014)
    二瓶裕之, 高岡一榮, 中谷龍男, コンポスト化処理法を用いたダイオキシン類汚染土壌浄化システムの開発, 三井造船技報, (185), 23-29 (2005)
    中石化公司, 中石化2014企業社會責任報告書, 67-68 (2014)
    田澤龍三, 污染土壤液洗技術之應用-日本經驗, 中興工程40週年慶系列研討會-土壤與地下水整治技術研討會, 64-76 (2009)
    石田 勲, 景山康志, 鈴木英夫, 印南侑亮, 近藤 岳, 大菅康一, 大規模PCB汚染土壌処理への取り組み-オンサイト・オフサイト浄化事業へ向けて, 三菱重工技報 VOL.43 ,NO.1 (2006)
    李崇漢, 張木彬, 垃圾焚化過程中生成影響因數之回顧, 中央大學環境工程學刊第三期 (1997)
    林偉志, 門多薩假單胞菌菌株對戴奧辛化合物生物降解之研究, 博士論文, 國立中山大學生物科學研究所 (2014)
    栄藤 徹, 藤田謹也, 寺倉誠一, 荒井利明, 荒岡 衛, 上島直幸, 環境ソリューション特集土壌浄化技術の開発状況, 三菱重工技報, VOL.39 ,NO.5 (2002)
    孫秀鳳, 黃秋華, 張木彬, 大氣中戴奧辛的傳輸行為模式與宿命, 工業污染防治季刊, 第85期 (2003)
    國際厚生健康園區編輯群, 戴奧辛的處理方法 (2005)
    張尊國, 台灣地區土壤污染現況與整治政策分析, 國政分析 (2002)
    斎藤 祐二, 萩原純一, 飯星茂, ダイオキシン類及びPCB 汚染土の浄化システムの開発, 大成建設技術センター報, 39,21-1-21-8 (2006)
    清水建設, ダイオキシン類洗浄プラント稼働, https://www.shimztechnonews.com/hotTopics/news/2009/t091007sec.html
    清水建設, 枯葉剤ダイオキシン汚染土壌の洗浄技術を確立, https://www.shimztechnonews.com/hotTopics/news/2016/161128.html
    黃智, 吳勇興, 林淑滿, 鍾裕仁, 土壤液洗技術於土壤污染整治應用, 中興工程季刊,第110期, 53-61 (2011)
    黃智, 林淑滿, 鍾裕仁, 利用螯合型介面活性劑處理受重金屬污染土壤之研究, 第十七屆廢棄物處理技術研討會論文集, 國立台灣大學 (2002)
    經濟部工業局, 財團法人台灣綠色生產力基金會, 堆肥技術與設備手冊及彙編 (2005)
    錢建嵩, 流體化技術:流體化床焚化爐與戴奧辛控制, https://scitechvista.nat.gov.tw/c/8OUi.htm (2010)
    簡宣裕, 製造堆肥時材料的碳氮比及水分含量之調整, 堆肥製造技術, 農業試驗所永續發展協會 (1999)
    蘇慧貞, 國內整體環境戴奧辛風險, 永續台灣-認識戴奧辛風險研討會 (2005)

    下載圖示 校內:2023-06-25公開
    校外:2023-06-25公開
    QR CODE