| 研究生: |
李佳昇 Lee, Jia-Sheng |
|---|---|
| 論文名稱: |
應用於熱管理系統之中高溫迴路式熱管可行性評估之研究 Feasibility studies of Thermal Management System with Loop Heat Pipe for Intermediate and High temperature range |
| 指導教授: |
呂宗行
Leu, Tzong-Shyng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 81 |
| 中文關鍵詞: | 迴路式熱管 、熱防護 、Dowtherm A |
| 外文關鍵詞: | Loop Heat Pipe(LHP), Thermal protection system(TPS), Dowtherm A. |
| 相關次數: | 點閱:112 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文研究熱管理系統中的熱防護科技,藉由主動式的熱管系統吸收來自外界的高溫熱能,以避免載具有所損壞。開發中高溫迴路式熱管做為中高溫熱防護是本研究的目標,而在熱管系統的設計開發過程中各環節環環相扣,必須挑選合適且相互匹配之工作流體、環路內各元件材質與毛細結構。經文獻指出與實際搭配實驗後,挑選Dowtherm A做為工作流體,管路材料則為不鏽鋼,毛細結構則是經由自行燒結而成的玻璃毛細蕊。實驗結果顯示中高溫迴路式熱管已經成功被開發,此迴路式熱管系統在最大操作瓦數550W下(熱通量:21.38W/cm2),其蒸發器表面溫度591.9℃,熱阻值為0.93℃/W。此外本研究也針對此系統動態響應、多點熱源模擬進行評估,其研究結果顯示在高低落差瓦數的功率週期測試中,本系統無過衝現象出現。而在多點熱源模擬測試方面,實驗後發現此系統持續進行熱防護工作並且可使蒸發器表面溫度更低。
Aerospace industries are facing the threat of high temperatures at the leading edge during flight. The thermal resistance of vehicle or device structures must be considered with the requirements of high efficiency and high security. Hence, it is necessary to establish a good thermal management system to prevent structure damage. This thesis aims to develop a Loop Heat Pipe (LHP) which is a powerful two phase heat transfer device and can be used in active thermal protection. Dowtherm A was selected as the working fluid and sintered glass wick was placed in the evaporator to provide capillary pumping force. The experimental results show that the intermediate and high temperature LHP has been successfully developed. The evaporator surface temperature is 591.9°C and the system thermal resistance is 0.93°C/ W under the maximum input power 550 watts (heat flux: 21.38W/cm2). In addition, Dynamic tests and multiple heat sources tests are evaluated in the system feasibility study. The results show that the system without overshoot in the power cycling tests (also named as dynamic test). After LHP is facing multiple heat sources, the system stay operates and the evaporator surface has lower temperature.
[1] J. R. Maxwell, R. W. Baldauff and T. T. Hoang, Two-phase thermal protection of the hypersonic leading edge. 46th AIAA Thermophysics Conference, 2016, 2016.
[2] B. Yendler, N. Poffenbarger, A. Patel, N. Bhave and P. Papadopoulos, New approach for thermal protection system of a probe during entry. 2nd International Planetary Probe Workshop, California USA, pp.245-250, 2005.
[3] S. Launay and M. Vallée, State-of-the-art experimental studies on loop heat pipes, Frontiers in Heat Pipes (FHP), Vol. 2, (1), 2011.
[4] J. Ku, Operating Characteristics of Loop Heat Pipes. 29th International Conference on Environmental System, Denver, Colorado, 1999.
[5] H. Nagano and J. Ku, Start-Up Behavior of a Miniature Loop Heat Pipe with Multiple Evaporators and Multiple Condensers. 45th AIAA Aerospace Sciences Meeting and Exhibit, 2007.
[6] R. R. Riehl and T. C. P. A. Siqueira, Heat transport capability and compensation chamber influence in loop heat pipes performance, Applied Thermal Engineering, Vol. 26, (11–12), pp. 1158-1168, 2006.
[7] M. N. Nikitkin, W. B. Bienert and K. A. Goncharov, Non Condensable Gases and Loop Heat Pipe Operation. 1998.
[8] H. Nagano, F. Fukuyoshi, H. Ogawa and H. Nagai, Development of an Experimental Small Loop Heat Pipe with Polytetrafluoroethylene Wicks, Journal of Thermophysics and Heat Transfer, Vol. 25, (4), pp. 547-552, 2011.
[9] F.-C. Lin, B.-H. Liu, C.-C. Juan and Y.-M. Chen, Effect of pore size distribution in bidisperse wick on heat transfer in a loop heat pipe, Heat and Mass Transfer, Vol. 47, (8), pp. 933-940, 2011.
[10] M. Mitomi and H. Nagano, Long-distance loop heat pipe for effective utilization of energy, International Journal of Heat and Mass Transfer, Vol. 77, (0), pp. 777-784, 2014.
[11] S. Hong, X. Zhang, Y. Tang, S. Wang and Z. Zhang, Experiment research on the effect of the evaporator’s configuration design of an innovative ultra-thin looped heat pipe, International Journal of Heat and Mass Transfer, Vol. 92, pp. 497-506, 2016.
[12] J. F. Maidanik, S. V. Vershinin, V. F. Kholodov and J. E. Dolgirev, Heat transfer apparatus, 1985.
[13] J. R. Hartenstine, W. G. Anderson, R. Bonner III and M. S. El‐Genk, Titanium loop heat pipes for space nuclear power systems. AIP Conference Proceedings, pp.44-52, 2008.
[14] B.-J. Huang, H.-H. Huang, C.-W. Chen and M.-S. Wu, Development of High-power LED Lighting Luminaires Using Loop Heat Pipe, Journal of Light & Visual Environment, Vol. 32, (2), pp. 148-155, 2008.
[15] S. Becker, S. Vershinin, V. Sartre, E. Laurien, J. Bonjour and Y. F. Maydanik, Steady state operation of a copper–water LHP with a flat-oval evaporator, Applied Thermal Engineering, Vol. 31, (5), pp. 686-695, 2011.
[16] M. Mochizuki, T. Nguyen, K. Mashiko, Y. Saito, T. Nguyen and V. Wuttijumnong, A review of heat pipe application including new opportunities, Front. Heat Pipes, Vol. 2, (1), pp. 1-15, 2011.
[17] T. Zhang, G. Pei, Q. Zhu and J. Ji, Experimental study of a novel photovoltaic solar-assisted heat pump/loop heat-pipe (PV-SAHP/LHP) system. IOP Conference Series: Earth and Environmental Science, pp.012017, 2017.
[18] J. Ku, M. Garrison, D. Patel, F. Robinson and L. Ottenstein, Loop Heat Pipe Temperature Oscillation Induced by Gravity Assist and Reservoir Heating. 2015.
[19] R. Somawardhana, Thermal Stability Testing of Two-Phase Thermal Control Hardware for the Surface Water Ocean Topography Mission. 2016.
[20] W. G. Anderson, High Temperature Capillary Pumped Loops, Heat Pipes and Capillary Pumped Loops, ASME, Vol. 236, pp. 93-101, 1993.
[21] S. Launay, V. Sartre and J. Bonjour, Parametric analysis of loop heat pipe operation: a literature review, International Journal of Thermal Sciences, Vol. 46, (7), pp. 621-636, 2007.
[22] D. Reay, R. McGlen and P. Kew, Heat pipes: theory, design and applications, Butterworth-Heinemann, 2013.
[23] A. Faghri, Heat pipe science and technology, Global Digital Press, 1995.
[24] A. Faghri, Heat pipes: review, opportunities and challenges, Frontiers in Heat Pipes (FHP), Vol. 5, (1), 2014.
[25] W. G. Anderson, Evaluation of Heat Pipe Working Fluids In The Temperature Range 450 to 700 K, AIP Conference Proceedings, Vol. 699, (1), pp. 20-27, 2004.
[26] H. Jouhara and A. J. Robinson, An Experimental Study of Small-Diameter Wickless Heat Pipes Operating in the Temperature Range 200 degrees C to 450 degrees C, Heat Transfer Engineering, Vol. 30, (13), pp. 1041-1048, 2009.
[27] M. K. Park and J. H. Boo, Thermal Performance of a Heat Pipe with Two Dissimilar Condensers for a Medium-Temperature Thermal Storage System, Journal of Applied Science and Engineering, Vol. 15, (2), pp. 123-129, 2012.
[28] S. W. Kang, Development of solar concentrator medium temperature heat pipe. 2014.
[29] W. Joung, K. S. Gam, Y.-G. Kim and I. Yang, Hydraulic operating temperature control of a loop heat pipe, International Journal of Heat and Mass Transfer, Vol. 86, pp. 796-808, 2015.
[30] W. Anderson, Intermediate Temperature Fluids for Heat Pipes and Loop Heat Pipes. 2007.
[31] P. Prado-Montes, D. Mishkinis, A. Kulakov, A. Torres and I. Pérez-Grande, Effects of non condensable gas in an ammonia loop heat pipe operating up to 125 °C, Applied Thermal Engineering, Vol. 66, (1–2), pp. 474-484, 2014.
[32] W. G. Anderson, R. W. Bonner, P. M. Dussinger, J. R. Hartenstine, D. B. Sarraf and I. E. Locci, Intermediate temperature fluids life tests - Experiments. 5th International Energy Conversion Engineering Conference, St. Louis, MO, pp.926-941, 2007.
[33] L. Bai, G. Lin, H. Zhang and D. Wen, Effect of evaporator tilt on the operating temperature of a loop heat pipe without a secondary wick, International Journal of Heat and Mass Transfer, Vol. 77, pp. 600-603, 2014.
[34] Y. Zhao, S. Chang, W. Zhang and B. Yang, Experimental research on thermal characteristics of loop heat pipe with liquid guiding holes, Applied Thermal Engineering, 2016.
[35] T. T. Hoang, T. A. O’Connell, J. Ku, C. D. Butler and T. D. Swanson, Miniature loop heat pipes for electronic cooling. ASME 2003 International Electronic Packaging Technical Conference and Exhibition, pp.517-525, 2003.
[36] P. Nemec, M. Smitka and M. Malcho, Heat Removal from Bipolar Transistor by Loop Heat Pipe with Nickel and Copper Porous Structures, The Scientific World Journal, Vol. 2014, p. 724740, 2014.
[37] Standard Test Method for Maximum Pore Diameter and Permeability of Rigid Porous Filters for Laboratory Use, 2011.
校內:2022-07-20公開