簡易檢索 / 詳目顯示

研究生: 劉顏賓
Liu, Yen-Pin
論文名稱: 熱挫屈複合層板之顫振分析
Flutter Analysis of Thermally Buckled Composite Laminated Plates
指導教授: 蕭樂群
Shiau, Le-Chung
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 95
中文關鍵詞: 彎曲勁度熱挫屈熱挫屈後挫屈模態改變熱彎矩複合層板空氣動壓力超音速有限元素顫振
外文關鍵詞: bending stiffness, thermal buckling, thermal postbuckling, thermal moment, finite element, composite laminate, flutter, aerodynamic pressure, buckle pattern change, supersonic
相關次數: 點閱:139下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本文採用von Karman幾何大變形假設,推導一54個自由度的高階三角形板元素,用以分析及討論複合層板在承受溫度場改變下之熱挫屈後的顫振行為。當溫度高於臨界挫屈溫度時,複合層板進入熱應力後挫屈階段,挫屈後層板之總位移可視為靜態變形與動態變形的總合。線性顫振分析須於頻率域中求解,通常臨界動壓力值出現在層板之第一(1,1)與第二(2,1)模態重合時,但複合層板因纖維排列方向及層板長寬比特性之影響,使得臨界動壓力會在不同情況下由不同模態之合併而產生。一般而言,顫振邊界的高低與層板的整體勁度有關,尤其是在超音速氣流方向的彎曲勁度更左右著 大小,當溫度逐漸升高至挫屈溫度時,能量發生不穩定現象,平面壓應力的產生造成層板的勁度降低,因此挫屈時之顫振邊界會比未挫屈前來得低,而當層板發生挫屈之後,因挫屈變形所引起的平面張力會增加層板的彎曲勁度,所以當溫度漸漸升高時,張力將會使彎曲勁度提升。對於角交複合層板而言,在氣流方向上的彎曲勁度以θ=0°時為最大,隨著纖維排列的改變,其彎曲勁度亦隨之降低。因此,此種層板的顫振邊界與其纖維角度的排列有著密切的關係。層板在後挫屈範圍內發生的挫屈模態改變(Buckle pattern change)現象,可以提供額外的勁度,造成顫振邊界上升。當層板在厚度方向受到不均勻的溫度梯度時,會使得層板產生熱彎矩,造成側向變形,進而產生平面張應力且增加層板之彎曲勁度,當溫度由室溫開始上升,層板的靜態變形型態將不再是平坦運動,會使得平坦與挫屈區域間的穩定邊界消失,並且明顯穩定複合層板的動態行為且提升顫振邊界。在非線性分析方面,若將λ固定而溫度開始增加時,層板的最大位移也開始增加,另外,最大的層板速度也將會隨溫度而增加。另一方面,當溫度固定而 增加時,則最大層板位移隨著空氣動壓力之增加將不會有太大的變化,但板的最大振動速度將會隨空氣動壓力而增加。

      Base on the von Karman large deflection assumptions, a 54 degree-of-freedom high precision high order triangular plate element is develop for flutter analysis of a thermally buckled composite laminated plate. For a buckled plate, the total response of the plate is considered to be the sum of the displacement of the buckled static deformation and that due to small dynamic oscillation about the static deformed shape. The flutter boundaries obtained in the linear flutter analysis, linear flutter analysis is solved in frequency domain. In general, the flutter coalescence pair is between the flutter modes (1,1) and (2,1). However, due to the special characters of the composite laminates, the coalescence pair may be between higher modes.Usually, the stiffness of the plate is the main factor in determining the flutter boundary, especially in the direction of supersonic airflow. But for a thermally buckled plate, the in-plane tensile force will increase the bending stiffness of the plate which in turn gives higher flutter boundary.The maximum value of flutter boundary for an angle-ply laminate is occurred when the fiber is orientated in the direction of the supersonic airflow, i.e. the x-direction. The buckle pattern change phenomenon occurred in the post-buckling range will raise the flutter boundary of the plate due to the stiffness of the plate altered by the phenomenon. Temperature gradient through the plate thickness will initially bend the plate that makes the stability boundary between the flat and buckled regions disappear. Temperature gradient will also increase the overall stiffness of the plate, stabilize the laminate plate, and give higher flutter boundary.For nonlinear flutter analysis, when λ is fixed, the maximum plate displacement and its velocity will increase with temperature. On the other hand, if the temperature remains constant, the maximum plate displacement will not vary much with the increase of the aerodynamic pressure. But the maximum plate vibrating speed will increase with aerodynamic pressure.

    目 錄 中文摘要 英文摘要 誌 謝 目錄............................................................................I 表目錄........................................................................III 圖目錄.........................................................................IV 符號說明.....................................................................VIII 第一章 緒論....................................................................1 第二章 公式推導...............................................................10 2.1複合層板基本公式............................................................10 2.2應變能、動能與功能..........................................................13 2.3有限元素推導................................................................14 2.4 動態平衡方程式.............................................................20 2.5求解流程....................................................................21 2.5.1 線性顫振之頻率域公式...........................................22 2.5.2非線性顫振之時域模態公式........................................23 第三章 結果與討論.............................................................28 3.1線性顫振分析................................................................30 3.1.1 Cross-ply正交對稱複合層板................................................30 3.1.2 Angle-ply角交對稱複合層板................................................34 3.2非線性顫振分析......................................................38 3.2.1 Cross-ply正交對稱複合層板......................................38 3.2.2 Angle-ply角交對稱複合層板......................................40 第四章 結論..................................................................44 參考文獻.......................................................................47 附錄...........................................................................53 附表...........................................................................55 附圖...........................................................................57

    參考文獻

    1. Dowell, E. H., “Panel Flutter:A Review of the Aeroelastic Stability of Plates and Shells,” AIAA Journal, Vol. 8, No. 3, pp. 385-399, 1970.

    2. Hedgepeth, J. M., “Flutter of Rectangular Simply Supported Panels at High Supersonic Speeds,” Journal of the aeronautical sciences, Vol. 24, pp. 563-573, 1957.

    3. Fung, Y. C., “On Two-Dimensional Panel Flutter,” Journal of the aeronautical sciences, Vol. 25, pp. 145-160, 1958.

    4. Bohon, H. L., and Dixon, S. C., “Some Recent Developments in Flutter of Flat Panels,” Journal of Aircraft, Vol. 1, No. 5, pp. 280-288, 1964.

    5. Dowell, E. H., “The Flutter of Multi-bay Panels at High Supersonic Speeds,” Washington, D. C., AIAA PAPER 64-0092, 1964.

    6. Dowell, E. H., and Voss, H. M., “Theoretical and Experimental Panel Flutter Studies in the Mach Number Range 1.0 to 5.0, ” AIAA Journal, Vol. 3, No. 12, pp. 2292-2304, 1965.

    7. Dugundji, J., “Theoretical Considerations of Panels Flutter at High Supersonic Mach Numbers,” AIAA Journal, Vol. 4, No. 7, pp. 1257-1266, 1966.

    8. Durvasula, S., “Flutter of Simply-Supported Parallelogrammic Flat Panels in Supersonic Flow,” Washington, D. C., AIAA PAPER 66-0474, 1966.

    9. Calligeros, J. M., and Dugundji, J., “Effects of Orthotropicity Orientation on Supersonic Panel Flutter,” AIAA Journal, Vol. 1, No. 9, pp. 2180-2182, 1963.

    10. Fralich R. W., “Postbuckling Effects on the Flutter of Simply Supported Rectangular Panels at Supersonic Speeds,” NASA TN D-1615, 1963.

    11. Schaeffer, H. G., and Heard, W. L., “Flutter of a Flat Panel Subjected to a Nonlinear Temperature Distribution,” AIAA Journal, Vol. 3, No. 10, pp. 1918-1923, 1965.

    12. Schaeffer, H. G. and Heard, W. L., “Flutter of a Simply Supported Panel Subjected to a Nonlinear Temperature Distribution and Supersonic Flow,” AIAA Paper 65-0112, 1965.

    13. Ketter, D. J., “Flutter of Flat, Rectangular, Orthotropic Panels,” AIAA Journal, Vol. 5, No. 1, pp. 116-124, 1967.

    14. Olson, M. D., “Finite Elements Applied to Panel Flutter,” AIAA Journal, Vol. 5, No. 12, pp. 2267-2270, 1967.

    15. Appa, V. K., and Somashekar, B. R., “Application of the Matrix Displacement Methods in the study of Panel Flutter,” AIAA Journal Vol. 7, No. 1, pp. 50-53, 1969.

    16. Olson, M. D., “Some Flutter Solutions Using Finite Elements,” AIAA Journal, Vol. 8, No. 4, pp. 747-752, 1970.

    17. Sander, G., and Bon, C., and Geradin, M., “Finite Element Analysis of Supersonic Panel Flutter,” International Journal for Numerical Methods in Engineering, Vol. 7, No. 3, pp. 379-394, 1973.

    18. Rossettos, J. N., and Tong, P., “Finite Element Analysis of Vibration and Flutter of Cantilever Anisotropic Plates,” Journal of Applied Mechanics, ASME, Vol. 41, No. 4, pp. 1075-1080, 1974.

    19. Yang, T. Y., and Han, A. D., “Flutter of Thermally Buckled Finite Element Panels,” AIAA Journal, Vol. 14, No. 7, pp. 975-977, 1976.

    20. Ramkumar, R. L. and Weisshaar, T. A., “Flutter of Flat Rectangular Anisotropic Plates in High Mach Number Supersonic Flow,” Journal of Sound and Vibration, Vol. 50, No. 4, pp. 587-597, 1977.

    21. Sawyer, J. W., “Flutter and Buckling of General Laminated Plates,” Journ-
    al of Aircraft, Vol. 14, No. 4, pp. 387-393, 1977.

    22. Chen, W. H., and Lin, T. C., “Flutter Analysis of Thin Cracked Panels Using the Finite Element Method” AIAA Journal, Vol. 23, No. 5, pp. 795-801, 1985.

    23. Shiau, L. C., Tsai, D. H., and Lee, L. J. ”Flutter of Composite Laminated Panel,” Trans. of AASRC, pp. 135-145, December, 1988.

    24. Lu, L. T. and Shiau, L. C., ”Flutter of General Laminated Panels in Supersonic Flow,” Journal of the Chinese Society of Mechanical Engineers, Vol. 10, No. 2, pp. 93-100, 1989.

    25. Prasad, M. S. R., and Sarma, B. S., “Panel Flutter Analysis Using High Precision Shear Flexible Element,” Journal of Sound and Vibration, Vol. 144, pp. 9-16, 1991.

    26. Lee, I., and Cho, M. H., “Supersonic Flutter Analysis of Clamped Symmetric Composite Panels Using Shear Deformable Finite Elements,” AIAA Journal, Vol. 29, No. 5, pp. 782-783, 1991.

    27. Shiau, L. C., and Chang, J. T., “Transverse Shear Effect on Flutter of Composite Panels,” Journal of Aerospace Engineering, ASCE, Vol. 5, pp. 465-479, 1992.

    28. Liaw, D. G., “Supersonic Flutter of Laminated Thin Plates with Thermal Effects,” Journal of Aircraft, Vol. 30, No. 1, pp. 105-111, 1993.

    29. Dowell, E. H., ”Nonlinear Oscillations of a Fluttering Plate,” AIAA Journal, Vol. 4, pp. 1267-1275, 1966.

    30. Dowell, E. H., “Nonlinear Oscillations of a Fluttering Plate II,” AIAA Journal, Vol. 5, pp. 1856-1862, 1967.

    31. Mei, C., “A Finite Element Approach for Nonlinear Panel Flutter,” AIAA
    Journal, Vol. 15, pp. 1107-1110, 1977.

    32. Dowell, E. H., “Flutter of a Buckled Plates as an Example of Chaotic Motion of a Deterministic Autonomous system,” Journal of Sound and Vibration, Vol. 85, No. 3, pp. 333-344, 1982.

    33. Han, A. D., and Yang, T. Y., ”Nonlinear Panel Flutter Using High-Order Triangular Finite Elements,” AIAA Journal, Vol. 21, No. 10, pp. 1453-1461, 1983.

    34. Shiau, L. C., and Lu, L. T., “Nonlinear Flutter of Two-Dimensional Simply Supported Symmetric Composite Laminated Plates,” Journal of Aircraft, Vol. 29, No. 1, pp. 140-145, 1992.

    35. Xue, D. Y., and Mei, C., ”Finite Element Nonlinear Flutter and Fatigue Life of Two-Dimensional Panels with Temperature Effects,” Journal of Aircraft, Vol. 30, No. 6, pp. 993-1000, 1993.

    36. Xue, D. Y., and Mei, C., “Finite Element Nonlinear Panel Flutter with Arbitrary Temperatures in Supersonic Flow,” AIAA Journal, Vol. 31, No. 1, pp. 154-162, 1993.

    37. Abbas, J. F., Ibrahim, R. A., and Gibson, R. F., “Nonlinear Flutter of Orthotropic Composite panel Under Aerodynamic Heating,” AIAA Journal, Vol. 31, No. 8, pp. 1478-1488, 1993.

    38. Zhou, R. C., Xue, D. Y., and Mei, C., “Finite Element Time Domain-Modal Formulation for Nonlinear Flutter of Composite Panels,” AIAA Journal, Vol. 32, No. 10, pp. 2044-2052, 1994.

    39. Zhou, R. C., Mei, C., and Huang, J. K., “Suppression of Nonlinear Panel Flutter at Supersonic Speeds and Elevated Temperatures,” AIAA Journal, Vol. 34, No. 2, pp. 347-354, 1996.

    40. Shiau, L. C. and Wu, T. Y., “Nonlinear Flutter of Laminated Plates With In-Plane Forces and Transverse Shear Effects,” Mechanics of structures and machines, Vol. 29, No. 1, pp. 121-142, 2001.

    41. Yang, T. Y., “Finite Element Structural Analysis,” Prentice-Hall, 1986.

    42. Tasi, “Composites Design,” Appendix B:Unit conversions and ply data B2-B3, 1988.

    43.陳來毅, “複合層板之熱挫屈現象分析,” Ph.D., M.E., NCKU, 1988.

    44. Gibson, R. F. “Principle of Composite Material Mechanics,” McGraw-Hill
    , 1994.

    45. Kuo, S. Y., “Aerothermoelastic Analysis of Composite Sandwich Plates,” Ph.D., IAA, NCKU, 2002.

    46. Chuang, J. W., “Thermal Post-buckling Analysis of Composite Laminate Plates,” Master, IAA, NCKU, 2003.

    47. Chen, C. Y., “Thermal Buckling Analysis of Composite Laminates,” Master, IAA, NCKU, 2003.

    48. Cheng, C. C., “Free Vibration Analysis of Thermally Buckled Composite Laminated Plates,” Master, IAA, NCKU, 2004.

    下載圖示 校內:立即公開
    校外:2005-07-14公開
    QR CODE