| 研究生: |
麥慶汶 Mai, Ching-Wen |
|---|---|
| 論文名稱: |
DES型流場模擬中發生於非平滑邊緣鈍體上Gibbs現象的處理方式 Treatment of the Gibbs phenomenon occurred on non-smooth edges of bluff body in DES-type flow simulation |
| 指導教授: |
張克勤
Chang, Keh-Chin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2025 |
| 畢業學年度: | 113 |
| 語文別: | 中文 |
| 論文頁數: | 80 |
| 中文關鍵詞: | IDDES 、超車過程 、Gibbs現象 、CFD |
| 外文關鍵詞: | IDDES, Overtaking process, Gibbs phenomenon, CFD |
| 相關次數: | 點閱:12 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究旨在針對IDDES於車輛超車之空氣動力學分析時所產生的數值問題及應對策略。由於傳統的RANS模型在處理兩車併行或尾流交互作用等複雜情境時,其預測結果與實驗數據存在顯著差異,本研究採用SST-IDDES此一混合式RANS-LES模型,以期更精確地捕捉大尺度紊流結構。然而,在使用高解析度網格對具有非平滑邊緣的鈍體進行模擬時,會因幾何尖角處物理量的不可微分性而引發Gibbs現象,導致數值結果產生非物理性的震盪。為此,本研究提出針對幾何奇異點與線附近進行局部網格加密的應對方式。結果顯示,此方法能有效抑制抖動,並將阻力係數(C_D)的預測誤差從約14%大幅降低至3%以內。儘管如此,所有模型對側向力係數(C_Y)的預測仍存在相對可觀的誤差 (>10%),其原因為模型對紊流黏滯係數採用等向性假設所致。總結而言,DES紊流模型雖然能更真實地呈現流場,但是其高解析度的需求使其在非平滑幾何上易觸發Gibbs現象,而局部網格加密為一有效的抑制手段。
This study investigates the numerical issues when applying Detached Eddy Simulation (DES) to the aerodynamic analysis of vehicle overtaking maneuvers. Traditional Reynolds-averaged Navier-Stokes (RANS) models show significant discrepancies between predicted results and experimental data, especially in complex scenarios like two vehicles driving side-by-side or interacting in wakes. To address this, this research employs IDDES, a hybrid RANS-LES (Large Eddy Simulation) model, aiming at more accurate capture of large-scale turbulent structures.
However, simulating bluff bodies with non-smooth edges using the spectral method, like LES, can trigger the Gibbs phenomenon. This occurs due to the non-differentiability of velocity at sharp edges, leading to non-physical, severe oscillations in the numerical results. To overcome this, the study proposes a strategy of local mesh refinement near geometric singularities and lines.The results demonstrate that this method effectively suppresses oscillations, significantly reducing the prediction error for the drag coefficient (C_D) from approximately 14% to within 3%. Despite this improvement, a substantial discrepancy in predicting the side force coefficient (C_Y) is still observed. It may be attributed to the model's assumption of isotropic turbulent viscosity.
In conclusion, while DES-type model offers a more realistic representation of flow field, its requirement for high resolution makes them susceptible to the Gibbs phenomenon on non-smooth geometries. Local mesh refinement is an effective suppression technique.
Ahmed, S. R., Ramm, G., & Faltin, G. (1984). Some salient features of the time-averaged ground vehicle wake. SAE transactions, 473-503. doi:10.4271/840300
ANSYS, I. (2025). Ansys Fluent Theory Guide 2025R1.
ANSYS, I. (2025). Ansys Fluent User's Guide 2025R1.
ANSYS, I. (2025). Ansys Meshing Users Guide 2025R1.
Arfken, G. B., Weber, H. J., & Harris, F. E. (2013). Mathematical Methods for Physicists (Seventh Edition). Boston: Academic Press.
Bello-Millán, F. J., Mäkelä, T., Parras, L., del Pino, C., & Ferrera, C. (2016). Experimental study on Ahmed's body drag coefficient for different yaw angles. Journal of Wind Engineering and Industrial Aerodynamics, 157, 140-144. doi:10.1016/j.jweia.2016.08.005
Clarke, J., & Filippone, A. (2007). Unsteady computational analysis of vehicle passing. Journal of Fluids Engineering-Transactions of the Asme, 129(3), 359-367. doi:10.1115/1.2427085
Corin, R. J., He, L., & Dominy, R. G. (2008). A CFD investigation into the transient aerodynamic forces on overtaking road vehicle models. Journal of Wind Engineering and Industrial Aerodynamics, 96(8-9), 1390-1411. doi:10.1016/j.jweia.2008.03.006
Deardorff, J. W. (1970). A numerical study of three-dimensional turbulent channel flow at large Reynolds numbers. Journal of Fluid Mechanics, 41(2), 453-480. doi:10.1017/S0022112070000691
Do van, D., Chou, C. C., & Chang, K. C. (2022). Aspects on Numerical Simulation of Overtaking Process between Two Vehicles. Journal of Aeronautics Astronautics and Aviation, 54(2), 161-178. doi:10.6125/JoAAA.202206_54(2).04
Do Van, D., Chou, C. C., & Chang, K. C. (2023). Numerical and experimental study of two-vehicle overtaking process. Advances in Mechanical Engineering, 15(12). doi:10.1177/16878132231221044
Durbin, P. (1995). Separated Flow Computations with the κ–ε–v2 Model. Aiaa Journal - AIAA J, 33, 659-664. doi:10.2514/3.12628
Durbin, P. A. (1993). A Reynolds stress model for near-wall turbulence. Journal of Fluid Mechanics, 249, 465-498. doi:10.1017/S0022112093001259
Fornberg, B. (1996). A Practical Guide to Pseudospectral Methods. In. Cambridge: Cambridge University Press.
Gritskevich, M. S., Garbaruk, A. V., Schütze, J., & Menter, F. R. (2012). Development of DDES and IDDES Formulations for the k-ω Shear Stress Transport Model. Flow, Turbulence and Combustion, 88(3), 431-449. doi:10.1007/s10494-011-9378-4
Guilmineau, E., Deng, G. B., Leroyer, A., Queutey, P., Visonneau, M., & Wackers, J. (2018). Assessment of hybrid RANS-LES formulations for flow simulation around the Ahmed body. Computers & Fluids, 176, 302-319. doi:10.1016/j.compfluid.2017.01.005
Guilmineau, E., Deng, G. B., & Wackers, J. (2011). Numerical simulation with a DES approach for automotive flows. Journal of Fluids and Structures, 27(5-6), 807-816. doi:10.1016/j.jfluidstructs.2011.03.010
Hinterberger, C., García-Villalba, M., & Rodi, W. (2004). Large eddy simulation of flow around the Ahmed body. In The Aerodynamics of Heavy Vehicles: Trucks, Buses, and Trains (pp. 77-87): Springer Berlin Heidelberg.
Hoffmann, K. A. (1989). Computational Fluid Dynamics for Engineers: Engineering Education System.
Launder, B. E., Reece, G. J., & Rodi, W. (1975). Progress in the development of a Reynolds-stress turbulence closure. Journal of Fluid Mechanics, 68(3), 537-566. doi:10.1017/S0022112075001814
Launder, B. E., & Spalding, D. B. (1974). The numerical computation of turbulent flows. Computer Methods in Applied Mechanics and Engineering, 3(2), 269-289. doi:10.1016/0045-7825(74)90029-2
Leonard, B. P. (1979). A stable and accurate convective modelling procedure based on quadratic upstream interpolation. Computer Methods in Applied Mechanics and Engineering, 19(1), 59-98. doi:10.1016/0045-7825(79)90034-3
Li, Q., Bou-Zeid, E., & Anderson, W. (2016). The impact and treatment of the Gibbs phenomenon in immersed boundary method simulations of momentum and scalar transport. Journal of Computational Physics, 310, 237-251. doi:10.1016/j.jcp.2016.01.013
Lienhart, H., & Becker, S. (2003). Flow and Turbulence Structure In the Wake of a Simplified Car Model. JOURNAL OF PASSENGER CAR: MECHANICAL SYSTEMS JOURNAL 112, 785-796. doi:10.4271/2003-01-0656
Menter, F., Hüppe, A., Matyushenko, A., & Kolmogorov, D. (2021). An Overview of Hybrid RANS–LES Models Developed for Industrial CFD. Applied Sciences, 11(6). doi:10.3390/app11062459
Menter, F. R. (1994). Two-equation eddy-viscosity turbulence models for engineering applications. Aiaa Journal, 32(8), 1598-1605. doi:10.2514/3.12149
Menter, F. R. (2011). Turbulence modeling for engineering flows. Ansys, Inc. doi:10.59972/zy8s6eve
Menter, F. R., Hüppe, A., Flad, D., Garbaruk, A. V., Matyushenko, A. A., & Stabnikov, A. S. (2024). Large Eddy Simulations for the Ahmed Car at 25° Slant Angle at Different Reynolds Numbers. Flow Turbulence and Combustion, 112(1), 321-343. doi:10.1007/s10494-023-00472-9
Menter, F. R., & Kuntz, M. (2004, 2004//). Adaptation of Eddy-Viscosity Turbulence Models to Unsteady Separated Flow Behind Vehicles. Paper presented at the The Aerodynamics of Heavy Vehicles: Trucks, Buses, and Trains, Berlin, Heidelberg.
Noger, C., Regardin, C., & Széchényi, E. (2005). Investigation of the transient aerodynamic phenomena associated with passing manoeuvres. Journal of Fluids and Structures, 21(3), 231-241. doi:10.1016/j.jfluidstructs.2005.05.013
Reynolds, W. C., & Hussain, A. K. M. F. (1972). The mechanics of an organized wave in turbulent shear flow. Part 3. Theoretical models and comparisons with experiments. Journal of Fluid Mechanics, 54(2), 263-288. doi:10.1017/S0022112072000679
Rodi, W. (1997). Comparison of LES and RANS calculations of the flow around bluff bodies. Journal of Wind Engineering and Industrial Aerodynamics, 71, 55-75. doi:10.1016/S0167-6105(97)00147-5
Roshko, A. (1955). On the Wake and Drag of Bluff Bodies. Journal of the Aeronautical Sciences. doi:10.2514/8.3286
Sagaut, P., & Lee, Y.-T. (2002). Large Eddy Simulation for Incompressible Flows: An Introduction. Scientific Computation Series (Vol. 55).
Saini, R., Karimi, N., Duan, L., Sadiki, A., & Mehdizadeh, A. (2018). Effects of Near Wall Modeling in the Improved-Delayed-Detached-Eddy-Simulation (IDDES) Methodology. Entropy, 20(10). doi:10.3390/e20100771
Shao, N., Yao, G. F., Zhang, C., & Wang, M. (2017). A research into the flow and vortex structures around vehicles during overtaking maneuver with lift force included. Advances in Mechanical Engineering, 9(9). doi:10.1177/1687814017732892
Shur, M., Spalart, P., Strelets, M., & Travin, A. (2008). A hybrid RANS-LES approach with delayed-DES and wall-modelled LES capabilities. International Journal of Heat and Fluid Flow, 29, 1638-1649. doi:10.1016/j.ijheatfluidflow.2008.07.001
Smagorinsky, J. (1963). General Circulation Experiments with the Primitive Equations. Part I, the Basic Experiment. Retrieved from Monthly Weather Review:
Spalart, P. (2000). Strategies for turbulence modelling and simulations. International Journal of Heat and Fluid Flow, 21, 252-263. doi:10.1016/S0142-727X(00)00007-2
Spalart, P. (2009). Detached-eddy simulation. Retrieved from
Spalart, P., & Allmaras, S. (1992). A One-Equation Turbulence Model for Aerodynamic Flows. AIAA, 439. doi:10.2514/6.1992-439
Spalart, P., Deck, S., Shur, M., Squires, K., Strelets, M., & Travin, A. (2006). A New Version of Detached-eddy Simulation, Resistant to Ambiguous Grid Densities. Theoretical and Computational Fluid Dynamics, 20, 181-195. doi:10.1007/s00162-006-0015-0
Spalart, P., Jou, W. H., Strelets, M., & Allmaras, S. (1997). Comments on the Feasibility of LES for Wings, and on a Hybrid RANS/LES Approach. Paper presented at the International conference; 1st, Advances in DNS/LES: Direct numerical simulation and large eddy simulation Ruston; LA.
Strelets, M. (2001). Detached Eddy Simulation of Massively Separated Flows.
Tennekes, H., & Lumley, J. L. (1972). A First Course in Turbulence.
Thacker, A., Aubrun, S., Leroy, A., & Devinant, P. (2012). Effects of suppressing the 3D separation on the rear slant on the flow structures around an Ahmed body. Journal of Wind Engineering and Industrial Aerodynamics, 107-108, 237-243. doi:10.1016/j.jweia.2012.04.022
Uystepruyst, D., & Krajnovic, S. (2013). Numerical simulation of the transient aerodynamic phenomena induced by passing manoeuvres. Journal of Wind Engineering and Industrial Aerodynamics, 114, 62-71. doi:10.1016/j.jweia.2012.12.018
Van Doormaal, J. P., & and Raithby, G. D. (1984). ENHANCEMENTS OF THE SIMPLE METHOD FOR PREDICTING INCOMPRESSIBLE FLUID FLOWS. Numerical Heat Transfer, 7(2), 147-163. doi:10.1080/01495728408961817
Yamamoto, S., Yanagimoto, K., Fukuda, H., China, H., & Nakagawa, K. (1997). Aerodynamic influence of a passing vehicle on the stability of the other vehicles. JSAE Review, 18(1), 39-44. doi:10.1016/S0389-4304(96)00063-X
林子勛. (2021). 以正交特徵分解法進行圓柱近域紊態場參數分析. (碩士). 國立成功大學