| 研究生: |
許哲崙 Hsu, Che-Lun |
|---|---|
| 論文名稱: |
槓桿式勁度可控質量阻尼器之效能評估與實驗驗證 Experimental Verification and Performance Evaluation of Leverage-type Stiffness Controllable Mass Damper System |
| 指導教授: |
朱世禹
Chu, Shih-Yu |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 261 |
| 中文關鍵詞: | 半主動控制 、槓桿式勁度可控質量阻尼器 、模糊控制律 、支點速度 、LQR控制律 、複合實驗 |
| 外文關鍵詞: | Semi-Active Control, Leverage-Type Stiffness Controllable Mass Damper, Fuzzy Control Rule, Pivot Velocity, Discrete-time Optimal Linear-Quadratic Regulator (LQR) control, Real-Time Hybrid Test |
| 相關次數: | 點閱:194 下載:8 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
由前人研究中可知槓桿式勁度可控質量阻尼器第一代(Leverage-type Stiffness Controllable Mass Damper I,簡稱LSCMD I)確實具有良好的減振成效,但仍有衝程過短、零件老舊及安裝不易等缺點,因此為解決這些問題,盧煉元教授開發了槓桿式勁度可控質量阻尼器第二代(Leverage-type Stiffness Controllable Mass Damper II,簡稱LSCMD II)。然於振動台實驗中卻發現在支點輸出範圍較大的情形下,LSCMD II有支點追不上命令的情形發生,因此本文將重新計算應將支點速度提升至多少才可完整呈現其控制成效。本文中以模糊控制律為控制基礎,並以小支點輸出範圍為理論基礎,首先識別出滾動單擺隔震系統(Roll Pendulum System,簡稱RPS)參數,再識別LSCMD II機構參數,接著調整地震PGA大小後將地震歷時輸入模擬程式,使用小支點輸出範圍下之模擬成果與實驗成果相比對,以此為評估依據,藉由模擬程式計算出較大支點輸出範圍限制下之支點速度,並將此支點速度定為目標支點速度,作為改善機構效能的指標。往後若欲重新設計新一代機構,由於機構參數將不一樣,因此對於支點速度的需求也將不同,則可參考本文之設計方法,重新計算出新一代機構的支點速度需求,並挑選適合機構之馬達。
The performance of the Leverage-type Stiffness Controllable Mass Damper I (LSCMD I) had been verified in previous studies. However, it still has some defects such as the limitation on damper stroke, the aging components and its complexity in installation. To resolve these problems, an upgrading LSCMD II is developed. However, when the demand of pivot displacement is bigger, the performance of pivot of the LSCMD II couldn’t satisfy the demand on command in the experiment. Therefore, to perfectly demonstrate the control effectiveness of LSCMD II, the maximum capacity of the upgraded LSCMD II should be identified. A fuzzy control rule based on a smaller output range is adopted through a series of shaking-table tests in this study. Based on the comparison between numerical simulation and experimental results in the smaller pivot output range configuration, the corresponding time-varying stiffness and pivot velocity are observed. The maximum capacity regarding the pivot velocity is identified and can be estimated by its numerical simulation, if the demand of larger pivot output range is required. Furthermore, the proposed evaluation procedure is applied to investigate the capacity requirement through the real-time hybrid test configuration if a discrete-time optimal linear-quadratic regulator (LQR) control law is adopted in the upgraded LSCMD II.
1. Frahm, H., “Device for Damping Vibration of Bodies”, US Patent, No. 989958, (1909).
2. Den Hartog, J.P., “Mechanical Vibrations, 4th edn”, McGraw Hill, New York, (1956).
3. Zadeh, L. A., “Fuzzy Sets”, Informat. Control, Vol.8, pp.338-353, 1965.
4. Crandall, S.H., Mark, W.D., “Random Vibration in Mechanical Systems”, Academic Press, New York, pp.55-101, (1973).
5. Zadeh, L. A., “Outline of a New Approach to the Analysis of Complex Systems and Decision Processes”, IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. SMC-3, NO. 1, JANUARY ,(1973)
6. Mamdani, E., “APPLICATION OF FUZZY LOGIC TO APPROXIMATE REASONING USING LINGUISTIC SYNTHESIS”, (1973)
7. McNamara, R. J., ”Tuned Mass Dampers for Buildings”, Journal of the Structural Division (ASCE), Vol. 103, No. 9, pp. 1785-1798, (1977).
8. Wiesner, K. B., ”Tuned Mass Dampers to Reduce Building Wind Motion”, Convention and Exposition (ASCE), Boston, Mass., April 2-6, (1979).
9. Warburton G.B., “Optimum Absorber Parameters for Various Combinations of Response and Excitation Parameters”, Earthquake Engineering and Structural Dynamics, Vol. 10, No. 3, pp.381-401, (1982).
10. Soong, T.T., “Active Structural Control: Theory and Practice”, John Wiley & Sons, Inc., New York, (1990).
11. Lin, C.C., Hu, C.M., Wang, J.F., Hu, R.Y., “Vibration Control Effectiveness of Passive Tuned Mass Dampers”, Journal of the Chinese Institute of Engineers, Vol. 17, No. 3, pp. 367-376, (1994).
12. Housner, G.W., Bergman, L.A., Caughey, T.K., Chassiakos, A.G., Claus, R.O., Masri, S.F., Skelton, R.E., Soong, T.T., Spencer, B.F., Yao J.T.P., “Structural Control: Past, Present, and Future”, Journal of Engineering Mechanics (ASCE), Vol. 123, No. 9, pp. 897-971, (1997).
13. Lu, L.Y., “Predictive control of seismic structures with semi-active friction dampers”, Earthquake Engineering and Structural Dynamics, Vol.33, No. 5, pp.647-668. ,(2004)
14. Chu, S.Y., Soong, T.T., Reinhorn, A.M., “Active, Hybrid and Semi-active Structural Control: A Design and Implementation Handbook”, John Wiley & Sons, Inc., New York, (2005).
15. Lu, L.Y., Lin, G.L., Kuo, T.C., “Stiffness controllable isolation system for near-fault seismic isolation” Earthquake Structures, Vol. 30, No. 3, 747-765,(2008).
16. He, W.L., Agrawal, A.K., “Analytical Model of Ground Motion Pulses for the Design and Assessment of Seismic Protective Systems”, Journal of Structural Engineering, Vol. 134, No. 7, pp 1177-1188. ,(2008)
17. Lu, L.Y., Hsu, C.C. Yeh, S.W., “A Leverage-type Semi-active Isolation System for Seismic Structures in Near-fault Regions (in Chinese)” Journal of the Chinese Institute of Civil and Hydraulic Engineering, Vol. 21, No. 3, pp. 319-338,(2009).
18. Lu, L.Y., Lin, T.K., Yeh, S.W., “Experiment and Analysis of A Leverage-type Stiffness Controllable Isolation System for Seismic Engineering” Earthquake Engineering and Structural Dynamics, Vol. 39, No. 15, 1711-1736, (2010).
19. Chey, M. H., Chase, J. G., “Semi-active tuned mass damper building systems: Design”, Earthquake Engineering and Structural Dynamics, Vol. 39, No. 2, pp. 119-139,(2010).
20. Chey, M. H., Chase, J. G., “Semi-active tuned mass damper building systems: Application”, Earthquake Engineering and Structural Dynamics, Vol. 39, No. 1, pp. 69-89,(2010).
21. Lu, L.Y., Chu, S.Y., Yeh, S.W., Peng, C.H., “Modeling and Experimental Verification of a Variable-Stiffness Isolation System Using Leverage Mechanism”, Journal of Vibration and Control, Vol. 17, No. 12, 1869-1885, (2011).
22. Nagarajaiah, S., “Hardening Duffing oscillator attenuation using a nonlinear TMD, a semi-active TMD and multiple TMD” S Journal of Sound and Vibration, Vol.322, No.4, pp. 674-686, (2013)
23. Alka, Y. Pisal. , “DYNAMIC RESPONSE OF STRUCTURE WITH SEMI-ACTIVE TUNED MASS FRICTION DAMPER”, International Journal of Structural and Civil Engineering Research, Vol. 2, No. 1 ,(2013)
24. 林建宏,「狀態空間法於隔減震結構分析上之應用」,國立高雄第一科技大學營建工程研究所,碩士論文(2002)。
25. 吳政鴻,「自調整模糊控制於射出成形機速度控制之研究」,國立成功大學造船暨船舶機械工程研究所,碩士論文(2003)。
26. 陳瑀涵,「以類神經網路模擬模糊滑動模式之主動結構控制」,中原大學土木工程學系,碩士論文(2005)
27. 黃昭勝,「結構半主動模糊控制基因演算法之研究」,國立成功大學土木工程研究所,碩士論文(2006)
28. 盧煉元、郭子敬、林錦隆,「勁度可控式滑動隔震系統」,中國土木水利工程學刊,第十八卷,第二期,265-278頁(2006)。
29. 王健,「變曲率滑動隔震防制近斷層震波之實驗與分析」,國立高雄第一科技大學營建工程研究所,碩士論文(2006)。
30. 許朝畯,「槓桿式勁度可控隔震系統之實驗與分析」,國立高雄第一科技大學營建工程研究所,碩士論文(2007)。
31. 林震宇,「可控式摩擦隔震系統之振動台」,國立高雄第一科技大學營建工程研究所,碩士論文(2009)
32. 蕭仲仁,「應用模糊決策樹控制法則於自走車防撞系統之研發」,國立成功大學航空太空工程學系,碩士論文(2009)。
33. 盧煉元、林錦隆,中華民國發明專利,專利名稱:可控式隔震系統。專利字號:發明第I308610號,專利証書日期:98年4月11日,專利期限:民國2009年4月11日至2025年10月27日止
34. 李文誠,「勁度可控式質量阻尼器之減振研究」,國立成功大學土木工程研究所,碩士論文(2009)。
35. 彭致華,「槓桿式勁度可控質量阻尼器於結構減振之應用與實驗驗證」,國立成功大學土木工程研究所,碩士論文(2010)。
36. 洪試閔,「應用模糊控制於熱澆道模具改善一模多穴流動平衡之研究」,國立高雄應用科技大學模具工程系,碩士論文(2011)
37. 簡誌德,「最小輸入能量法於半主動質量阻尼器系統之應用研究」,國立成功大學土木工程研究所,碩士論文 ( 2011 )
38. 張洵,「模糊控制律於勁度可控式隔震系統之實驗研究」,國立高雄第一科技大學營建工程研究所,碩士論文(2012)
39. 林鼎傑,「最小能量控制律於槓桿式勁度可控質量阻尼器系統之實驗驗證」,國立成功大學土木工程研究所,碩士論文(2014)。
40. 葉芷歆,「槓桿式勁度可變質量阻尼器之混合實驗驗證」,國立高雄第一科技大學營建工程系,專題報告(2015)
41. 葉芷歆、林曉芳,「槓桿式可控隔減震系統」,國立高雄第一科技大學營建工程系,使用手冊 (2015)
42. 鄭榮杰,「槓桿式半主動摩擦阻尼器於結構減震應用之實驗分析」,國立高雄第一科技大學營建工程系,碩士論文 (2015)
43. 陳祈丞,「模糊控制律於勁度可控質量阻尼器系統之實驗驗證」,國立成功大學土木工程研究所,碩士論文 (2015)