| 研究生: |
楊子賢 Yang, Tzu-Hsien |
|---|---|
| 論文名稱: |
具有分級奈米孔洞之金屬有機骨架於水相超級電容器的應用 The applications of hierarchically nanoporous metal-organic framework in aqueous supercapacitors |
| 指導教授: |
龔仲偉
Kung, Chung-Wei |
| 學位類別: |
碩士 Master |
| 系所名稱: |
智慧半導體及永續製造學院 - 關鍵材料學位學程 Program on Key Materials |
| 論文出版年: | 2025 |
| 畢業學年度: | 113 |
| 語文別: | 中文 |
| 論文頁數: | 122 |
| 中文關鍵詞: | 電荷傳輸 、儲能 、合成後修飾 、氧化還原導電性 、鋯基MOF |
| 外文關鍵詞: | Charge transport, Energy storage, Post-synthetic modification, Redox conductivity, Zirconium-based MOF |
| 相關次數: | 點閱:103 下載:19 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
採用軟模板策略合成UiO-66-NH2,一種具有高度化學穩定性的鋯基金屬有機骨架(Metal-Organic Framework, MOF),該骨架同時具有微孔的晶體結構和較大的中孔,然後使用合成後修飾方法,將具有氧化還原活性的錳離子配位到MOF因缺少連接器而產生缺陷的節點上,也合成了不含中孔的一般UiO-66-NH2及其安裝錳的材料。對這些材料的結晶性、孔洞性和形態進行鑑定,接著把它們在導電電極上製作成薄膜,以測量其在Na2SO4水相電解液中的電化學行為。具有氧化還原活性錳位點的MOF與奈米碳管混合形成複合材料,旨在用於水相超級電容器,並進行恆定電流測試以量化電容。
相較於安裝錳的微孔MOF,具有分級孔洞性的MOF可使更多的錳位點參與電化學反應,且在薄膜中發生離子耦合電荷跳躍的現象,速率提高了近20倍,從而在超級電容器中實現更好的性能。本篇論文的研究結果強調了在氧化還原活性MOF中創建中孔的重要性,以加速電化學反應過程中離子在薄膜內的質量傳輸,並展現了這種穩定的分級多孔MOF在電化學應用的前景。
A chemically robust zirconium-based metal–organic framework (MOF, UiO-66-NH2) possessing both micropores from its crystalline structure and large mesopores is synthesized by employing the soft-template-assisted synthesis, and redox-active manganese ions are post-synthetically coordinated on the nodes of MOF where missing-linker defects are located. Regular UiO-66-NH2 without mesopores and its manganese-installed material with a similar manganese loading per node are also synthesized. Crystallinity, porosity and morphologies of these materials are characterized. Thereafter, thin films of these MOFs are fabricated on conducting electrodes to measure their electrochemical behaviors in aqueous Na2SO4-based electrolytes, where the MOF is found structurally robust. The redox-active MOFs are also blended with carbon nanotubes to form composites, aiming for the use in aqueous supercapacitors, and galvanostatic tests are performed to quantify the capacitance.
Compared to the manganese-installed MOF without the hierarchical porosity, its counterpart possessing large mesopores can render more manganese sites electrochemically addressable and achieve an around 20-fold faster ion-coupled charge-hopping phenomenon occurring in the MOF thin film, resulting in a better performance when it is employed in supercapacitors. Findings here highlight the importance of creating large mesopores in redox-active MOFs in order to accelerate the mass transfer of ionic species within MOFs during electrochemical reactions and shed light on utilizing such hierarchically porous and stable MOFs in numerous electrochemical applications.
[1] E. E. Benson, C. P. Kubiak, A. J. Sathrum and J. M. Smieja, Electrocatalytic and homogeneous approaches to conversion of CO 2 to liquid fuels, Chemical Society Reviews, 38, 89-99, 2009.
[2] M. Shao, Q. Chang, J.-P. Dodelet and R. Chenitz, Recent advances in electrocatalysts for oxygen reduction reaction, Chemical reviews, 116, 3594-3657, 2016.
[3] S. Anantharaj, S. R. Ede, K. Sakthikumar, K. Karthick, S. Mishra and S. Kundu, Recent trends and perspectives in electrochemical water splitting with an emphasis on sulfide, selenide, and phosphide catalysts of Fe, Co, and Ni: a review, Acs Catalysis, 6, 8069-8097, 2016.
[4] S. Thomas, T. Deepak, G. Anjusree, T. Arun, S. V. Nair and A. S. Nair, A review on counter electrode materials in dye-sensitized solar cells, Journal of Materials Chemistry A, 2, 4474-4490, 2014.
[5] M. Shi and F. C. Anson, Rapid oxidation of Ru (NH3) 63+ by Os (bpy) 33+ within Nafion coatings on electrodes, Langmuir, 12, 2068-2075, 1996.
[6] P. Bertoncello, I. Ciani, F. Li and P. R. Unwin, Measurement of apparent diffusion coefficients within ultrathin Nafion Langmuir− Schaefer films: comparison of a novel scanning electrochemical microscopy approach with cyclic voltammetry, Langmuir, 22, 10380-10388, 2006.
[7] P. Simon and Y. Gogotsi, Materials for electrochemical capacitors, Nature materials, 7, 845-854, 2008.
[8] J.-M. Tarascon and M. Armand, Issues and challenges facing rechargeable lithium batteries, nature, 414, 359-367, 2001.
[9] X. Wang, Q. Wang, Q. Wang, F. Gao, F. Gao, Y. Yang and H. Guo, Highly dispersible and stable copper terephthalate metal–organic framework–graphene oxide nanocomposite for an electrochemical sensing application, ACS applied materials & interfaces, 6, 11573-11580, 2014.
[10] Y. Liu, Y. Zhang, J. Chen and H. Pang, Copper metal–organic framework nanocrystal for plane effect nonenzymatic electro-catalytic activity of glucose, Nanoscale, 6, 10989-10994, 2014.
[11] R. J. Mortimer, Electrochromic materials, Annual review of materials research, 41, 241-268, 2011.
[12] D. N. Futaba, K. Hata, T. Yamada, T. Hiraoka, Y. Hayamizu, Y. Kakudate, O. Tanaike, H. Hatori, M. Yumura and S. Iijima, Shape-engineerable and highly densely packed single-walled carbon nanotubes and their application as super-capacitor electrodes, Nature materials, 5, 987-994, 2006.
[13] N.-L. Wu, Nanocrystalline oxide supercapacitors, Materials Chemistry and Physics, 75, 6-11, 2002.
[14] A. Rudge, J. Davey, I. Raistrick, S. Gottesfeld and J. P. Ferraris, Conducting polymers as active materials in electrochemical capacitors, Journal of power sources, 47, 89-107, 1994.
[15] K. Jost, G. Dion and Y. Gogotsi, Textile energy storage in perspective, Journal of Materials Chemistry A, 2, 10776-10787, 2014.
[16] G. Wang, L. Zhang and J. Zhang, A review of electrode materials for electrochemical supercapacitors, Chemical Society Reviews, 41, 797-828, 2012.
[17] Y. Gogotsi and R. M. Penner, Vol. 12, ACS Publications, 2018, pp. 2081-2083.
[18] Y. Jiang and J. Liu, Definitions of pseudocapacitive materials: a brief review, Energy & Environmental Materials, 2, 30-37, 2019.
[19] B. E. Conway, Electrochemical supercapacitors: scientific fundamentals and technological applications, Springer Science & Business Media, 2013.
[20] J. Zheng and T. Jow, High energy and high power density electrochemical capacitors, Journal of Power Sources, 62, 155-159, 1996.
[21] M. Toupin, T. Brousse and D. Bélanger, Charge storage mechanism of MnO2 electrode used in aqueous electrochemical capacitor, Chemistry of Materials, 16, 3184-3190, 2004.
[22] S. Devaraj and N. Munichandraiah, High capacitance of electrodeposited MnO2 by the effect of a surface-active agent, Electrochemical and Solid-State Letters, 8, A373, 2005.
[23] S. C. Pang, M. A. Anderson and T. W. Chapman, Novel electrode materials for thin‐film ultracapacitors: comparison of electrochemical properties of sol‐gel‐derived and electrodeposited manganese dioxide, Journal of the Electrochemical Society, 147, 444, 2000.
[24] J.-K. Chang, M.-T. Lee and W.-T. Tsai, In situ Mn K-edge X-ray absorption spectroscopic studies of anodically deposited manganese oxide with relevance to supercapacitor applications, Journal of Power Sources, 166, 590-594, 2007.
[25] M. Toupin, T. Brousse and D. Bélanger, Influence of microstucture on the charge storage properties of chemically synthesized manganese dioxide, Chemistry of materials, 14, 3946-3952, 2002.
[26] S. Devaraj and N. Munichandraiah, The effect of nonionic surfactant triton X-100 during electrochemical deposition of MnO2 on its capacitance properties, Journal of The Electrochemical Society, 154, A901, 2007.
[27] H. Furukawa, K. E. Cordova, M. O’Keeffe and O. M. Yaghi, The chemistry and applications of metal-organic frameworks, Science, 341, 1230444, 2013.
[28] G. Férey, Hybrid porous solids: past, present, future, Chemical Society Reviews, 37, 191-214, 2008.
[29] A. J. Howarth, Y. Liu, P. Li, Z. Li, T. C. Wang, J. T. Hupp and O. K. Farha, Chemical, thermal and mechanical stabilities of metal–organic frameworks, Nature Reviews Materials, 1, 1-15, 2016.
[30] I. M. Hönicke, I. Senkovska, V. Bon, I. A. Baburin, N. Bönisch, S. Raschke, J. D. Evans and S. Kaskel, Balancing mechanical stability and ultrahigh porosity in crystalline framework materials, Angewandte Chemie International Edition, 57, 13780-13783, 2018.
[31] O. K. Farha, I. Eryazici, N. C. Jeong, B. G. Hauser, C. E. Wilmer, A. A. Sarjeant, R. Q. Snurr, S. T. Nguyen, A. O. z. r. Yazaydın and J. T. Hupp, Metal–organic framework materials with ultrahigh surface areas: is the sky the limit?, Journal of the American Chemical Society, 134, 15016-15021, 2012.
[32] S. M. Cohen, Postsynthetic methods for the functionalization of metal–organic frameworks, Chemical reviews, 112, 970-1000, 2012.
[33] J. D. Evans, C. J. Sumby and C. J. Doonan, Post-synthetic metalation of metal–organic frameworks, Chemical Society Reviews, 43, 5933-5951, 2014.
[34] Y. Sun, L. Wang, W. A. Amer, H. Yu, J. Ji, L. Huang, J. Shan and R. Tong, Hydrogen storage in metal-organic frameworks, Journal of Inorganic and Organometallic Polymers and Materials, 23, 270-285, 2013.
[35] M. Ding, R. W. Flaig, H.-L. Jiang and O. M. Yaghi, Carbon capture and conversion using metal–organic frameworks and MOF-based materials, Chemical Society Reviews, 48, 2783-2828, 2019.
[36] J.-R. Li, R. J. Kuppler and H.-C. Zhou, Selective gas adsorption and separation in metal–organic frameworks, Chemical Society Reviews, 38, 1477-1504, 2009.
[37] Z. Kang, L. Fan and D. Sun, Recent advances and challenges of metal–organic framework membranes for gas separation, Journal of Materials Chemistry A, 5, 10073-10091, 2017.
[38] J. Lee, O. K. Farha, J. Roberts, K. A. Scheidt, S. T. Nguyen and J. T. Hupp, Metal–organic framework materials as catalysts, Chemical Society Reviews, 38, 1450-1459, 2009.
[39] M. Yoon, R. Srirambalaji and K. Kim, Homochiral metal–organic frameworks for asymmetric heterogeneous catalysis, Chemical reviews, 112, 1196-1231, 2012.
[40] Q. Liu, R. Li, J. Li, B. Zheng, S. Song, L. Chen, T. Li and Y. Ma, The Utilization of Metal‐Organic Frameworks and Their Derivatives Composite in Supercapacitor Electrodes, Chemistry–A European Journal, 30, e202400157, 2024.
[41] W. Xia, A. Mahmood, R. Zou and Q. Xu, Metal–organic frameworks and their derived nanostructures for electrochemical energy storage and conversion, Energy & Environmental Science, 8, 1837-1866, 2015.
[42] L. Wang, Y. Han, X. Feng, J. Zhou, P. Qi and B. Wang, Metal–organic frameworks for energy storage: Batteries and supercapacitors, Coordination Chemistry Reviews, 307, 361-381, 2016.
[43] Y. Cui, Y. Yue, G. Qian and B. Chen, Luminescent functional metal–organic frameworks, Chemical reviews, 112, 1126-1162, 2012.
[44] L. E. Kreno, K. Leong, O. K. Farha, M. Allendorf, R. P. Van Duyne and J. T. Hupp, Metal–organic framework materials as chemical sensors, Chemical reviews, 112, 1105-1125, 2012.
[45] C.-S. Liu, J. Li and H. Pang, Metal-organic framework-based materials as an emerging platform for advanced electrochemical sensing, Coordination Chemistry Reviews, 410, 213222, 2020.
[46] L. Liu, Y. Zhou, S. Liu and M. Xu, The applications of metal− organic frameworks in electrochemical sensors, ChemElectroChem, 5, 6-19, 2018.
[47] N. C. Burtch, H. Jasuja and K. S. Walton, Water stability and adsorption in metal–organic frameworks, Chemical reviews, 114, 10575-10612, 2014.
[48] W. Zheng, M. Liu and L. Y. S. Lee, Electrochemical instability of metal–organic frameworks: in situ spectroelectrochemical investigation of the real active sites, Acs Catalysis, 10, 81-92, 2019.
[49] W. Zheng and L. Y. S. Lee, Metal–organic frameworks for electrocatalysis: catalyst or precatalyst?, ACS Energy Letters, 6, 2838-2843, 2021.
[50] S. Mukherjee, S. Hou, S. A. Watzele, B. Garlyyev, W. Li, A. S. Bandarenka and R. A. Fischer, Avoiding Pyrolysis and Calcination: Advances in the Benign Routes Leading to MOF‐Derived Electrocatalysts, ChemElectroChem, 9, e202101476, 2022.
[51] J. H. Cavka, S. Jakobsen, U. Olsbye, N. Guillou, C. Lamberti, S. Bordiga and K. P. Lillerud, A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability, Journal of the American Chemical Society, 130, 13850-13851, 2008.
[52] Z. Chen, S. L. Hanna, L. R. Redfern, D. Alezi, T. Islamoglu and O. K. Farha, Reticular chemistry in the rational synthesis of functional zirconium cluster-based MOFs, Coordination Chemistry Reviews, 386, 32-49, 2019.
[53] Y. Bai, Y. Dou, L.-H. Xie, W. Rutledge, J.-R. Li and H.-C. Zhou, Zr-based metal–organic frameworks: design, synthesis, structure, and applications, Chemical Society Reviews, 45, 2327-2367, 2016.
[54] A. A. Talin, A. Centrone, A. C. Ford, M. E. Foster, V. Stavila, P. Haney, R. A. Kinney, V. Szalai, F. El Gabaly and H. P. Yoon, Tunable electrical conductivity in metal-organic framework thin-film devices, Science, 343, 66-69, 2014.
[55] L. Sun, M. G. Campbell and M. Dincă, Electrically conductive porous metal–organic frameworks, Angewandte Chemie International Edition, 55, 3566-3579, 2016.
[56] J.-H. Li, Y.-S. Wang, Y.-C. Chen and C.-W. Kung, Metal–organic frameworks toward electrocatalytic applications, Applied Sciences, 9, 2427, 2019.
[57] D. Sheberla, J. C. Bachman, J. S. Elias, C.-J. Sun, Y. Shao-Horn and M. Dincă, Conductive MOF electrodes for stable supercapacitors with high areal capacitance, Nature materials, 16, 220-224, 2017.
[58] S. Goswami, D. Ray, K.-i. Otake, C.-W. Kung, S. J. Garibay, T. Islamoglu, A. Atilgan, Y. Cui, C. J. Cramer and O. K. Farha, A porous, electrically conductive hexa-zirconium (IV) metal–organic framework, Chemical science, 9, 4477-4482, 2018.
[59] C.-W. Kung, K. Otake, C. T. Buru, S. Goswami, Y. Cui, J. T. Hupp, A. M. Spokoyny and O. K. Farha, Increased electrical conductivity in a mesoporous metal–organic framework featuring metallacarboranes guests, Journal of the American Chemical Society, 140, 3871-3875, 2018.
[60] S. Lin, P. M. Usov and A. J. Morris, The role of redox hopping in metal–organic framework electrocatalysis, Chemical Communications, 54, 6965-6974, 2018.
[61] S. R. Ahrenholtz, C. C. Epley and A. J. Morris, Solvothermal preparation of an electrocatalytic metalloporphyrin MOF thin film and its redox hopping charge-transfer mechanism, Journal of the American Chemical Society, 136, 2464-2472, 2014.
[62] C.-H. Shen, Y.-H. Chen, Y.-C. Wang, T.-E. Chang, Y.-L. Chen and C.-W. Kung, Probing the electronic and ionic transport in topologically distinct redox-active metal–organic frameworks in aqueous electrolytes, Physical Chemistry Chemical Physics, 24, 9855-9865, 2022.
[63] C.-H. Chuang, J.-H. Li, Y.-C. Chen, Y.-S. Wang and C.-W. Kung, Redox-Hopping and Electrochemical Behaviors of Metal–Organic Framework Thin Films Fabricated by Various Approaches, The Journal of Physical Chemistry C, 124, 20854-20863, 2020.
[64] J. S. Seo, D. Whang, H. Lee, S. I. Jun, J. Oh, Y. J. Jeon and K. Kim, A homochiral metal–organic porous material for enantioselective separation and catalysis, Nature, 404, 982-986, 2000.
[65] R. J. Marshall and R. S. Forgan, Postsynthetic Modification of Zirconium Metal‐Organic Frameworks, European Journal of Inorganic Chemistry, 2016, 4310-4331, 2016.
[66] B. A. Johnson, A. Bhunia, H. Fei, S. M. Cohen and S. Ott, Development of a UiO-type thin film electrocatalysis platform with redox-active linkers, Journal of the American Chemical Society, 140, 2985-2994, 2018.
[67] I. Hod, W. Bury, D. M. Gardner, P. Deria, V. Roznyatovskiy, M. R. Wasielewski, O. K. Farha and J. T. Hupp, Bias-switchable permselectivity and redox catalytic activity of a ferrocene-functionalized, thin-film metal–organic framework compound, The journal of physical chemistry letters, 6, 586-591, 2015.
[68] S. Lin, Y. Pineda‐Galvan, W. A. Maza, C. C. Epley, J. Zhu, M. C. Kessinger, Y. Pushkar and A. J. Morris, Electrochemical water oxidation by a catalyst‐modified metal–organic framework thin film, ChemSusChem, 10, 514-522, 2017.
[69] C.-W. Kung, T.-H. Chang, L.-Y. Chou, J. T. Hupp, O. K. Farha and K.-C. Ho, Post metalation of solvothermally grown electroactive porphyrin metal–organic framework thin films, Chemical Communications, 51, 2414-2417, 2015.
[70] S. Yuan, Y. P. Chen, J. Qin, W. Lu, X. Wang, Q. Zhang, M. Bosch, T. F. Liu, X. Lian and H. C. Zhou, Cooperative cluster metalation and ligand migration in zirconium metal–organic frameworks, Angewandte Chemie International Edition, 54, 14696-14700, 2015.
[71] R. C. Klet, T. C. Wang, L. E. Fernandez, D. G. Truhlar, J. T. Hupp and O. K. Farha, Synthetic access to atomically dispersed metals in metal–organic frameworks via a combined atomic-layer-deposition-in-MOF and metal-exchange approach, Chemistry of Materials, 28, 1213-1219, 2016.
[72] C.-W. Kung, C. O. Audu, A. W. Peters, H. Noh, O. K. Farha and J. T. Hupp, Copper nanoparticles installed in metal–organic framework thin films are electrocatalytically competent for CO2 reduction, ACS Energy Letters, 2, 2394-2401, 2017.
[73] T.-E. Chang, C.-H. Chuang and C.-W. Kung, An iridium-decorated metal–organic framework for electrocatalytic oxidation of nitrite, Electrochemistry Communications, 122, 106899, 2021.
[74] Y.-L. Chen, Y.-C. Wang, Y.-H. Chen, T.-E. Chang, C.-H. Shen, C.-W. Huang and C.-W. Kung, Pore-confined cobalt sulphide nanoparticles in a metal–organic framework as a catalyst for the colorimetric detection of hydrogen peroxide, Materials Advances, 3, 6364-6372, 2022.
[75] Y. S. Wang, Y. C. Chen, J. H. Li and C. W. Kung, Toward metal–organic‐framework‐based supercapacitors: room‐temperature synthesis of electrically conducting MOF‐based nanocomposites decorated with redox‐active manganese, European Journal of Inorganic Chemistry, 2019, 3036-3044, 2019.
[76] L. S. Xie, G. Skorupskii and M. Dinca, Electrically conductive metal–organic frameworks, Chemical reviews, 120, 8536-8580, 2020.
[77] C.-W. Kung, S. Goswami, I. Hod, T. C. Wang, J. Duan, O. K. Farha and J. T. Hupp, Charge transport in zirconium-based metal–organic frameworks, Accounts of chemical research, 53, 1187-1195, 2020.
[78] K. M. Choi, H. M. Jeong, J. H. Park, Y.-B. Zhang, J. K. Kang and O. M. Yaghi, Supercapacitors of nanocrystalline metal–organic frameworks, ACS nano, 8, 7451-7457, 2014.
[79] J.-H. Li, Y.-C. Chen, Y.-S. Wang, W. H. Ho, Y.-J. Gu, C.-H. Chuang, Y.-D. Song and C.-W. Kung, Electrochemical evolution of pore-confined metallic molybdenum in a metal–organic framework (MOF) for all-MOF-based pseudocapacitors, ACS Applied Energy Materials, 3, 6258-6267, 2020.
[80] L. L. Zhang and X. Zhao, Carbon-based materials as supercapacitor electrodes, Chemical society reviews, 38, 2520-2531, 2009.
[81] W. Wei, X. Cui, W. Chen and D. G. Ivey, Manganese oxide-based materials as electrochemical supercapacitor electrodes, Chemical society reviews, 40, 1697-1721, 2011.
[82] K. Jayaramulu, M. Horn, A. Schneemann, H. Saini, A. Bakandritsos, V. Ranc, M. Petr, V. Stavila, C. Narayana and B. Scheibe, Covalent graphene‐MOF hybrids for high‐performance asymmetric supercapacitors, Advanced materials, 33, 2004560, 2021.
[83] J. Qian, Q. Li, L. Liang, T.-T. Li, Y. Hu and S. Huang, A microporous MOF with open metal sites and Lewis basic sites for selective CO 2 capture, Dalton Transactions, 46, 14102-14106, 2017.
[84] A. Pal, S. Chand and M. C. Das, A water-stable twofold interpenetrating microporous MOF for selective CO2 adsorption and separation, Inorganic Chemistry, 56, 13991-13997, 2017.
[85] N. A. Khan, Z. Hasan and S. H. Jhung, Beyond pristine metal-organic frameworks: Preparation and application of nanostructured, nanosized, and analogous MOFs, Coordination Chemistry Reviews, 376, 20-45, 2018.
[86] Y. Yue, P. F. Fulvio and S. Dai, Hierarchical metal–organic framework hybrids: perturbation-assisted nanofusion synthesis, Accounts of chemical research, 48, 3044-3052, 2015.
[87] N. Klein, I. Senkovska, K. Gedrich, U. Stoeck, A. Henschel, U. Mueller and S. Kaskel, A mesoporous metal–organic framework, Angewandte Chemie International Edition, 48, 9954-9957, 2009.
[88] Z. Li, A. W. Peters, V. Bernales, M. A. Ortuño, N. M. Schweitzer, M. R. DeStefano, L. C. Gallington, A. E. Platero-Prats, K. W. Chapman and C. J. Cramer, Metal–organic framework supported cobalt catalysts for the oxidative dehydrogenation of propane at low temperature, ACS Central Science, 3, 31-38, 2017.
[89] G. Cai and H. L. Jiang, A modulator‐induced defect‐formation strategy to hierarchically porous metal–organic frameworks with high stability, Angewandte Chemie International Edition, 56, 563-567, 2017.
[90] K. Shen, L. Zhang, X. Chen, L. Liu, D. Zhang, Y. Han, J. Chen, J. Long, R. Luque and Y. Li, Ordered macro-microporous metal-organic framework single crystals, Science, 359, 206-210, 2018.
[91] M. Sarker, S. Shin, J. H. Jeong and S. H. Jhung, Mesoporous metal-organic framework PCN-222 (Fe): promising adsorbent for removal of big anionic and cationic dyes from water, Chemical Engineering Journal, 371, 252-259, 2019.
[92] L. Feng, S.-H. Lo, K. Tan, B.-H. Li, S. Yuan, Y.-F. Lin, C.-H. Lin, S.-L. Wang, K.-L. Lu and H.-C. Zhou, An encapsulation-rearrangement strategy to integrate superhydrophobicity into mesoporous metal-organic frameworks, Matter, 2, 988-999, 2020.
[93] S. El-Hankari, J. Aguilera-Sigalat and D. Bradshaw, Surfactant-assisted ZnO processing as a versatile route to ZIF composites and hollow architectures with enhanced dye adsorption, Journal of Materials Chemistry A, 4, 13509-13518, 2016.
[94] A. A. Lysova, D. G. Samsonenko, K. A. Kovalenko, A. S. Nizovtsev, D. N. Dybtsev and V. P. Fedin, A series of mesoporous metal‐organic frameworks with tunable windows sizes and exceptionally high ethane over ethylene adsorption selectivity, Angewandte Chemie International Edition, 59, 20561-20567, 2020.
[95] Z. Chen, P. Li, R. Anderson, X. Wang, X. Zhang, L. Robison, L. R. Redfern, S. Moribe, T. Islamoglu and D. A. Gómez-Gualdrón, Balancing volumetric and gravimetric uptake in highly porous materials for clean energy, Science, 368, 297-303, 2020.
[96] X. Zhang, C. Y. Chuah, P. Dong, Y.-H. Cha, T.-H. Bae and M.-K. Song, Hierarchically porous Co-MOF-74 hollow nanorods for enhanced dynamic CO2 separation, ACS applied materials & interfaces, 10, 43316-43322, 2018.
[97] P. Li, S.-Y. Moon, M. A. Guelta, S. P. Harvey, J. T. Hupp and O. K. Farha, Encapsulation of a nerve agent detoxifying enzyme by a mesoporous zirconium metal–organic framework engenders thermal and long-term stability, Journal of the American Chemical Society, 138, 8052-8055, 2016.
[98] S. Jeong, Y. Sim, J. K. Kim, S. Shin, J. Lim, J. Seong, S. Lee, D. Moon, S. B. Baek and C. U. Kim, Creating Tunable Mesoporosity by Temperature‐Driven Localized Crystallite Agglomeration, Small, 18, 2107006, 2022.
[99] L. Wang, X. Feng, L. Ren, Q. Piao, J. Zhong, Y. Wang, H. Li, Y. Chen and B. Wang, Flexible solid-state supercapacitor based on a metal–organic framework interwoven by electrochemically-deposited PANI, Journal of the American Chemical Society, 137, 4920-4923, 2015.
[100] J. W. Osterrieth, D. Wright, H. Noh, C.-W. Kung, D. Vulpe, A. Li, J. E. Park, R. P. Van Duyne, P. Z. Moghadam and J. J. Baumberg, Core–shell gold Nanorod@ zirconium-based metal–organic framework composites as in situ size-selective Raman probes, Journal of the American Chemical Society, 141, 3893-3900, 2019.
[101] B. Wang, X.-L. Lv, D. Feng, L.-H. Xie, J. Zhang, M. Li, Y. Xie, J.-R. Li and H.-C. Zhou, Highly stable Zr (IV)-based metal–organic frameworks for the detection and removal of antibiotics and organic explosives in water, Journal of the American Chemical Society, 138, 6204-6216, 2016.
[102] Y. Yao, X. Zhao, G. Chang, X. Yang and B. Chen, Hierarchically porous metal–organic frameworks: synthetic strategies and applications, Small Structures, 4, 2200187, 2023.
[103] M. Eddaoudi, J. Kim, N. Rosi, D. Vodak, J. Wachter, M. O'Keeffe and O. M. Yaghi, Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage, Science, 295, 469-472, 2002.
[104] Z. Wang, S. Hu, J. Yang, A. Liang, Y. Li, Q. Zhuang and J. Gu, Nanoscale zr‐based MOFs with tailorable size and introduced mesopore for protein delivery, Advanced Functional Materials, 28, 1707356, 2018.
[105] K. Li, J. Yang and J. Gu, Hierarchically porous MOFs synthesized by soft-template strategies, Accounts of Chemical Research, 55, 2235-2247, 2022.
[106] J. Chen, K. Li, J. Yang, F. Xia, X. Liu and J. Gu, Temperature-controlled synthesis of trimodal hierarchically porous MOFs with variable core–shell configurations, Chemistry of Materials, 36, 3307-3315, 2024.
[107] L.-B. Sun, J.-R. Li, J. Park and H.-C. Zhou, Cooperative template-directed assembly of mesoporous metal–organic frameworks, Journal of the American Chemical Society, 134, 126-129, 2012.
[108] K. Li, S. Lin, Y. Li, Q. Zhuang and J. Gu, Aqueous‐Phase Synthesis of Mesoporous Zr‐Based MOFs Templated by Amphoteric Surfactants, Angewandte Chemie, 130, 3497-3501, 2018.
[109] K. Li, J. Yang, R. Huang, S. Lin and J. Gu, Ordered large‐pore MesoMOFs based on synergistic effects of triblock polymer and hofmeister ion, Angewandte Chemie, 132, 14228-14232, 2020.
[110] K. Li, J. Yang and J. Gu, Spatially organized functional bioreactors in nanoscale mesoporous MOFs for cascade scavenging of intracellular ROS, Chemistry of Materials, 33, 2198-2205, 2021.
[111] L. Lupica-Spagnolo, D. J. Ward, J.-J. Marie, S. Lymperopoulou and D. Bradshaw, Pollen-like ZIF-8 colloidosomes via emulsion templating and etching, Chemical Communications, 54, 8506-8509, 2018.
[112] J. Yang, K. Li and J. Gu, Hierarchically macro-microporous Ce-based MOFs for the cleavage of DNA, ACS Materials Letters, 4, 385-391, 2022.
[113] K. Li, Y. Zhao, J. Yang and J. Gu, Nanoemulsion-directed growth of MOFs with versatile architectures for the heterogeneous regeneration of coenzymes, Nature Communications, 13, 1879, 2022.
[114] M.-D. Tsai, K.-C. Wu and C.-W. Kung, Zirconium-based metal–organic frameworks and their roles in electrocatalysis, Chemical Communications, 60, 8360-8374, 2024.
[115] M. Stodolka, J. Y. Choi, X. Fang, C. Lu, H. T. Pham, B. Check and J. Park, Electrosynthesis of a Nickel-Based Conductive Metal–Organic Framework with Controlled Morphology for Enhanced Capacitance, ACS Materials Letters, 6, 49-55, 2023.
[116] M. Cai, Q. Loague and A. J. Morris, Design rules for efficient charge transfer in metal–organic framework films: the pore size effect, The journal of physical chemistry letters, 11, 702-709, 2020.
[117] Y. D. Song, W. H. Ho, Y. C. Chen, J. H. Li, Y. S. Wang, Y. J. Gu, C. H. Chuang and C. W. Kung, Selective formation of polyaniline confined in the nanopores of a metal–organic framework for supercapacitors, Chemistry–A European Journal, 27, 3560-3567, 2021.
[118] A. K. Zak, W. A. Majid, M. E. Abrishami and R. Yousefi, X-ray analysis of ZnO nanoparticles by Williamson–Hall and size–strain plot methods, Solid State Sciences, 13, 251-256, 2011.
[119] M. R. DeStefano, T. Islamoglu, S. J. Garibay, J. T. Hupp and O. K. Farha, Room-temperature synthesis of UiO-66 and thermal modulation of densities of defect sites, Chemistry of Materials, 29, 1357-1361, 2017.
[120] C.-H. Shen, Y.-N. Chang, Y.-L. Chen and C.-W. Kung, Sulfonate-grafted metal–organic framework─ a porous alternative to Nafion for electrochemical sensors, ACS Materials Letters, 5, 1938-1943, 2023.
[121] M. Kandiah, S. Usseglio, S. Svelle, U. Olsbye, K. P. Lillerud and M. Tilset, Post-synthetic modification of the metal–organic framework compound UiO-66, Journal of Materials Chemistry, 20, 9848-9851, 2010.
[122] M. O. Abdelmigeed, J. J. Mahle, G. W. Peterson and G. N. Parsons, Highly Mesoporous Zr‐Based MOF‐Fabric Composites: A Benign Approach for Expeditious Degradation of Chemical Warfare Agents and Simulants, Small, 20, 2405831, 2024.
[123] M. J. Young, A. M. Holder, S. M. George and C. B. Musgrave, Charge storage in cation incorporated α-MnO2, Chemistry of Materials, 27, 1172-1180, 2015.
[124] X. Zhao, Y. Hou, Y. Wang, L. Yang, L. Zhu, R. Cao and Z. Sha, Prepared MnO 2 with different crystal forms as electrode materials for supercapacitors: experimental research from hydrothermal crystallization process to electrochemical performances, RSC advances, 7, 40286-40294, 2017.
[125] W. H. Ho, T.-Y. Chen, K.-i. Otake, Y.-C. Chen, Y.-S. Wang, J.-H. Li, H.-Y. Chen and C.-W. Kung, Polyoxometalate adsorbed in a metal–organic framework for electrocatalytic dopamine oxidation, Chemical Communications, 56, 11763-11766, 2020.
[126] A. J. Bard, L. R. Faulkner and H. S. White, Electrochemical methods: fundamentals and applications, John Wiley & Sons, 2022.
[127] R. H. Baughman, A. A. Zakhidov and W. A. De Heer, Carbon nanotubes--the route toward applications, science, 297, 787-792, 2002.
[128] A. F. Seliem, A. Y. Mohammed, A. Attia, S. Aman, N. Ahmad and M. M. Ibrahim, ZIF-67 MOF-derived Mn3O4@ N-doped C as a supercapacitor electrode in different alkaline media, ACS omega, 9, 17563-17576, 2024.
[129] M. Hussain, L. A. El Maati, M. A. Alomar, M. Ali, M. Abdullah, S. Aman and H. M. T. Farid, Enhancement of capacitive properties of Ce-doped MnAl2O4 electrode for high performance energy storage applications, JOM, 76, 4587-4597, 2024.
[130] Y.-Z. Su, T.-C. Lin, C.-S. Tsai, C.-W. Kung and S.-S. Yu, Growth of Metal–Organic Framework within Macroporous PEDOT: PSS Aerogels Prepared by Directional Freezing for Supercapacitors, ACS Applied Energy Materials, 8, 122-133, 2024.
[131] S. E. Moosavifard, M. F. El-Kady, M. S. Rahmanifar, R. B. Kaner and M. F. Mousavi, Designing 3D highly ordered nanoporous CuO electrodes for high-performance asymmetric supercapacitors, ACS applied materials & interfaces, 7, 4851-4860, 2015.
[132] Y. Zhang, J. Fu, P. Cui, S. Cheng, X. Cui, T. Qin, J. Zhou, Z. Zhang, Q. Su and E. Xie, Low-crystalline birnessite-MnO2 nanograins for high-performance supercapacitors, Electrochimica Acta, 389, 138761, 2021.
[133] C.-C. Wei, P.-H. Lin, C.-E. Hsu, W.-B. Jian, Y.-L. Lin, J.-T. Chen, S. Banerjee, C.-W. Chu, A. P. Khedulkar and R.-A. Doong, Boosting areal capacitance in WO3-based supercapacitor materials by stacking nanoporous composite films, Cell Reports Physical Science, 5, 2024.
[134] B. Gao, X. Li, Y. Ma, Y. Cao, Z. Hu, X. Zhang, J. Fu, K. Huo and P. K. Chu, MnO2–TiO2/C nanocomposite arrays for high-performance supercapacitor electrodes, Thin Solid Films, 584, 61-65, 2015.
[135] S. H. Song, J. S. Park, J. H. Song, C. S. Lee and J. Bae, Multi-dimensional nanocarbons hybridized with silicon oxides and their application for electrochemical capacitors, Carbon Letters, 29, 123-131, 2019.
[136] C.-H. Shen, C.-H. Chuang, Y.-J. Gu, W. H. Ho, Y.-D. Song, Y.-C. Chen, Y.-C. Wang and C.-W. Kung, Cerium-based metal–organic framework nanocrystals interconnected by carbon nanotubes for boosting electrochemical capacitor performance, ACS Applied Materials & Interfaces, 13, 16418-16426, 2021.
[137] M. S. M. Ali, Z. Zainal, M. Z. Hussein, M. H. Wahid, S.-K. Chang, L. M. Fudzi and A. A. M. Al-Zahrani, Mesoporous carbon film via spin coating soft templating method for supercapacitor electrode, International Journal of Nanotechnology, 16, 640-659, 2019.
[138] H. Wu, W. Zhang, S. Kandambeth, O. Shekhah, M. Eddaoudi and H. N. Alshareef, Conductive metal–organic frameworks selectively grown on laser‐scribed graphene for electrochemical microsupercapacitors, Advanced Energy Materials, 9, 1900482, 2019.
[139] K. Fan, L. Guan, Y. Gu, S. Liu and C. Wang, Conjugated coordination polymers as multifunctional platform for electrochemical energy storage, Coordination Chemistry Reviews, 519, 216098, 2024.
[140] A. M. Wright, M. T. Kapelewski, S. Marx, O. K. Farha and W. Morris, Transitioning metal–organic frameworks from the laboratory to market through applied research, Nature materials, 24, 178-187, 2025.