| 研究生: |
陳錦慧 Chen, Chin-Hui |
|---|---|
| 論文名稱: |
利用Z-scan技術研究偶氮染料掺雜液晶聚合物之非線性光學性質 Nonlinear optical properties of azo-dye-doped polymer dispersed liquid crystal films using Z-scan technique |
| 指導教授: |
傅永貴
Fuh, Y.G. Andy |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 物理學系 Department of Physics |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 120 |
| 中文關鍵詞: | 偶氮染料掺雜液晶聚合物 、非線性光學 |
| 外文關鍵詞: | Z-scan, nonlinear optical property, PDLC |
| 相關次數: | 點閱:79 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文利用Z-scan技術研究奈米液晶球之偶氮染料掺雜聚合物液晶薄膜(azo-dye-doped polymer dispersed liquid Crystal, ADDPDLC )之非線性光學性質。Z-scan 技術只需使用單一光束和簡單的實驗架設,就可以量測材料的非線性吸收係數與非線性折射係數,即光學柯爾常數的高靈敏技術。Z-scan技術量測光學柯爾常數的原理是基於樣品的非線性折射率會產生自聚焦或者自發散現象,利用自聚焦或者是自發散的結論推論其相位及折射率的變化。我們首先使用Z-scan技術量測到偶氮染料掺雜液晶薄膜(azo-dye-doped liquid crystal,ADDLC)具有很大光學柯爾常數 ,其造成原因是熱效應和染料同分異構化效應。藉由環境溫度的改變,我們可調控偶氮染料掺雜液晶薄膜(ADDLC)的光學柯爾常數 。再使用Z-scan技術量測奈米尺寸ADDPDLC樣品的光學柯爾常數 ,同樣地,藉由不同環境溫的改變,也可以調控奈米尺寸ADDPDLC樣品的光學柯爾常數 。實驗結果顯示在環境溫度為35度時,可以量測到最大的光學柯爾常數 ,這是由於液晶相變點從純液晶之61度提前至約43度 。
This thesis explores the nonlinear optical properties of nano-sized liquid crystal droplets azo-dye-doped polymer dispersed liquid crystal(ADDPDLC ) films using Z-scan technique, which is a simple but powerful technique to measure the optical Kerr constant of materials. The measurement of the optical Kerr constant using Z-scan technique is based on the principle of spatial beam distortion due to the self-focusing or self-defocusing that are associated with the intensity-dependent refractive index of the material. Firstly, the nonlinear refractive index of azo-dye-doped LC film is investigated using the Z-scan technique. The results indicate that the optical Kerr constant (n2) of this material is large resulting from the thermal effect and photoisomerization effect. Thus, the optical Kerr coefficient n2 of azo-dye-doped LC film can be modulated by changing the temperature of the sample. In addition, the optical Kerr coefficient n2 of the azo-dye-doped nano-sized PDLC film at various temperatures is also measured using Z-scan technique. The maximum n2 of the azo-dye-doped nano-sized PDLC film is at~ 35 oC.The cause is due to the decrease of clearing temperature of ADDPDLC films. The clearing temperatures for the liquid crystal (E7) used in this work, and ADDPDLC are found to be 61 oC and 43 oC , respectively.
[1] B. Bahoadur,” Liquid Crystals-Applications and Uses”, World Scientific Press, Singapore (1990).
[2] A. Yariv, “Optical Electronics in Modern Communications”, 5th Ed., Oxford University Press, New York, 1997.
[3] M. Lu and K. H. Yang, SID Tech. Digest, 31, 338 (2000).
[4] M Blinov and V.G. Chigrinov, “Electrooptic Effects in Liquid Crystal Materials”, Springer-Verlag, New York (1994).
[5] A. Yariv, “Optical Electronics in Modern Communications”, 5th Ed., Oxford University Press, New York, 1997.
[6] E. B. Priestley, P. J. Wojtowicz and P. Sheng, “Introduction to Liquid Crystals”, Princeton, New Jersey, 1975.
[7] Peter J. Collings and Michael Hird, “Introduction to Liquid Crystals Chemistry and Physics”, Taylor and Francis, London, 1997.
[8] Giovanni Barberoan and Luiz Roberto Evangelista, “Adsorption phenomena and anchoring energy in nematic Liquid Crystals”, Taylor and Francis, Boca Raton, 2006.
[9] 朱自強, 王仕璠, 蘇顯渝, 現代光學教程, 四川大學出版社, 成都(1990).
[10] V. G. Chigrinov, “Liquid crystal devices-Physics and Applications”, Artech House, 1st ed (1999)
[11] Paul S. Drzaic, "Liquid Crystal Dispersions", World Scientific, Singapore (1995)
[12] G. P. CrawFord and Zumer, "Liquid Crystal in Complex Geometries" , Taylor, London (1996)
[13] I. Jánossy, A.D. Lloyd and B. S. Wherrett, Mol. Crys. Liq. Cryst., 179, 1 (1990).
[14] I. Ja’nossy, L. Csillag and A.D. Lloyd, Phys. Rev. A, 44, 8410 (1991).
[15] I. Ja’nossy and T. Kosa, Opt. Lett., 17, 1183 (1992).
[16] I. Ja’nossy and A.D. Lloyd, Mol. Crys. & Liq. Cryst., 203, 74 (1991).
[17] I. Ja’nossy, Phys. Rev. E, 49, 8410 (1994).
[18] Dennis Gabor, Nature, 161, 777 (1948).
[19] W. M. Gibbons, P. J. Shannon, S. T. Sun, and B. J. Swetlin, Nature, 351, 49 (1991).
[20] W. M. Gibbons, T. Kosa, P. Palffy-Muhoray, P. J. Shannon and S. T. Sun, Nature, 377, 43 (1995).
[21] W. Y. Y. Wong, T. M. Wong and H. Hiraoka, Appl. Phys. A65, 519 (1997).
[22] H. Hervel, W. Urbach, and F. Rondelez, J. Chem. Phys. 68, 2725 (1978).
[23] C.-R. Lee, T.-S. Mo, K.-T. Cheng, T.-L. Fu and A. Y.-G Fuh, Appl. Phys. Lett., 83, 4285 (2003).
[24] A. G. Chen and D. J. Brady, Opt. Lett., 17, 441 (1992).
[25] T. V. Gastyan, V. Drnoyan, S. M. Arakelian, Phys. Lett. A, 217, 52 (1996).
[26] I. C. Khoo, H. Li and Y. Liang, Opt. Lett., 19, 1723 (1994).
[27] I. C. Khoo, IEEE J. Quantum Electron., 32, 525 (1996).
[28] M. Sheik-bahae, A. A. Said, and E. W. Van Stryland, Opt. Lett., 14,955 (1989)
[29] M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, E. W. Van Stryland, IEEE J. Quantum Electron., 26, 760 (1990).
[30] S. R. Friberg and P. W. Smith, IEEE J. Quantum Electron., QE-23, 2089 (1987).
[31] R. Adair, L.L. Chase, and S.A. Payne, L. Opt. Soc. Amer. B, 4, 875 (1987).
[32] A. Owyoung, IEEE J. Quantum Electron., QE-9, 1064 (1973).
[33] W.E. Williams, M.J. Soileau, and E.W. Van Stryland, Opt. Commun., 50, 256 (1984).
[34] J. D. Gaskill, “Linear systems, Fourier Transforms, and Optics”, John Wiley& Sons, Inc., New York, 1978.
[35] D. Weaire, B. S. Wherrett, D. A. B. Miller and S. D. Smith, Opt. Lett., 4, 331 (1979).
[36] Alexabder V. Ivashchenko, "Dichroic Dyes for Liquid Crystals", Boca Raton & Ann Arbor, London Tokyo (1994).
[37] http://www.aandb.com.tw/download/Jade%20DSC.doc台灣杜邦股份有限公司
[38] http://www.aandb.com.tw/download/Diamond%20DSC.doc台灣杜邦股份有限公司
[39] Grant R. Fowles, “Introduction to Modern Optics”, 2nd ed., University of Utah, New York(1975).
[40] K. H. Yang ,J. Appl. Phys. 84, 4780 (1988)