簡易檢索 / 詳目顯示

研究生: 陳宛兒
Chen, Wan-erh
論文名稱: 點帶石斑魚肌肉生長抑制基因之功能分析及分子調控
Functional analysis and molecular regulation of orange-spotted grouper (Epinephelus coioides) myostatin
指導教授: 陳宗嶽
Chen, Zong-yue
學位類別: 碩士
Master
系所名稱: 生物科學與科技學院 - 生物科技研究所
Institute of Biotechnology
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 107
中文關鍵詞: 肌肉生長抑制素肌分化調節因子點帶石斑魚免疫剔除術
外文關鍵詞: grouper, Myostatin, Immune-depletion technology, MyoD
相關次數: 點閱:117下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 肌肉生長抑制素 (Myostatin) 屬於轉化生長因子-beta家族,為調節細胞之增殖以及分化的因子,具有抑制肌肉生長發育的功能。在蛋白功能分析上,Myostatin主要包括三個區域:(1)作為釋放訊息的N端部分,(2)高度保留性的蛋白切割位RXRR,(3)以及半胱氨酸豐富的C端活性區域,其中C端活性區域被認為是較重要之區域。利用一套免疫剔除 (immune-depletion) 技術降低魚體內內生性肌肉生長抑制素,藉此了解肌肉抑制基因於魚體內的功能;在啟動子分析方面,石斑魚肌肉生長抑制基因啟動子全長為1,936 bp,其上具有10個由CANNTG短核苷酸組成的序列,可能為肌肉生長相關調節區段,將其全長及系列區段剔除的片段接入帶有螢火蟲螢光蛋白報導基因的質體(pGL3-Basic),再轉染進入石斑魚鰭細胞株 (GF-1 cell line) 裡觀察其功能表現,找出啟動子最重要的調控區域及探討可能調控啟動子的相關調節因子。

    Myostatin (GDF-8), which belongs to TGF-ß superfamily, is a secreted growth and differentiation factor. It functions as a negative regulator for the growth of skeletal muscle. In the functional analysis of Myostatin, the open reading frame is very conservative, including three domains: (1) N-terminus domain, it functions as secretory signal peptide, (2) conserved proteolytic processing site RXRR, and (3) C-terminus cysteine-rich region as mature bioactive region. Among them, C-terminus cysteine-rich region was determined the most important region. We developed an immunodepletion technique, which is sufficient to induce anti-Myostatin immunoresponse, to demonstrate the function of Myostatin in the grouper. In addition, orange-spotted grouper (Epinephelus coioides) myostatin promoter is defined as 1936-bp and contains ten putative E-Box (CANNTG) motifs. Various constructs of the grouper myostatin promoter were transfected into the grouper cells, regulatory regions on myostatin promoter and the relative regulatory factors were analysed.

    目錄 中文摘要 І 英文摘要 II 致謝 III 目錄 IV 圖目錄 VI 表目錄 VIII 附圖目錄 IX 1. 研究背景 1 1.1 點帶石斑魚 (orange-spotted grouper, Epinephelus coioides) 1 1.2 肌肉生長抑制基因 (myostatin , GDF-8) 2 1.3 點帶石斑魚肌肉生長抑制基因序列及蛋白功能分析 4 1.4 肌肉生長抑制基因啟動子分析 5 1.5 病毒與肌肉生長抑制基因的關係 5 1.6 神經壞死病毒與點帶石斑魚肌肉生長抑制基因之調控 6 1.7 肌分化調節因子 (MyoD, myoblast determination factor) 8 1.8 點帶石斑魚肌分化調節因子基因的序列分析 9 1.9 研究目的 10 2. 研究方法及步驟 11 2.1 實驗材料 11 2.2 實驗方法 12 3. 實驗結果 27 3.1 石斑魚肌肉生長抑制蛋白免疫剔除術之應用 27 3.2 石斑魚肌肉生長抑制基因啟動子之生物活性分析 30 3.3 石斑魚肌肉生長抑制基因啟動子之重要區域分析 31 3.4 肌分化調節因子之選殖及序列分析 32 3.5 肌分化調節因子對肌肉抑制肌因的調控 34 4. 討論 37 4.1 石斑魚肌肉生長抑制蛋白免疫剔除術之應用 37 4.2 石斑魚肌肉生長抑制基因啟動子之生物活性分析 41 4.3 石斑魚肌肉生長抑制基因啟動子之重要區域分析 42 4.4 肌分化調節因子之選殖及序列分析 46 4.5 肌分化調節因子對肌肉抑制基因的調控 47 4.6 總結 48 5. 參考文獻 50 圖目錄 圖一、免疫剔除法之動物實驗流程圖 56 圖二、動物實驗組別57 圖三、利用大腸桿菌表現肌肉抑制基因抗原片段重組蛋白58 圖四、石斑魚免疫注射後之抗體血清力價 59 圖五、石斑魚免疫注射後體重變化趨勢 61 圖六、石斑魚免疫注射後外表型之變化情形 62 圖七、石斑魚肌肉組織冷凍切片及HE染色分析 63 圖八、石斑魚肌肉組織冷凍切片及肌肉抑制蛋白表現分析 64 圖九、石斑魚實驗過程之飼料消耗量及飼料轉換率 65 圖十、肌肉生長抑制基因全長啟動子構築載體示意圖 66 圖十一、電穿孔實驗示意圖 67 圖十二、石斑魚肌肉抑制基因啟動子之螢光活性表現 68 圖十三、石斑魚肌肉生長抑制基因啟動子之螢火蟲冷螢光活性表現 69 圖十四、雙股RNA造成肌肉生長抑制基因啟動子活性下降之可能機制圖 70 圖十五、2-aminopurine可抑制poly (I:C)調節的肌肉生長抑制基因啟動子活性降低情形 71 圖十六、肌肉生長抑制基因啟動子構築示意圖 72 圖十七、肌肉生長抑制基因啟動子上受poly (I:C)所調控之區域 73 圖十八、石斑魚肌肉抑制基因啟動子重要調控區域之結合分析 74 圖十九、點帶石斑魚肌分化調節因子全長cDNA與其轉譯之胺基酸序列 76 圖二十、石斑魚肌分化調節因子基因之親緣關係比對 77 圖二十一、石斑魚肌分化調節因子在各組織中的相對表現量 78 圖二十二、石斑魚肌分化調節因子與肌肉生長抑制素於肌肉組織的表現情形 80 圖二十三、石斑魚肌分化調節因子於石斑魚魚鰭細胞內之表現 81 圖二十四、利用大腸桿菌表現石斑魚肌分化調節因子重組蛋白 82 圖二十五、利用大腸桿菌表現石斑魚肌分化調節因子重組蛋白 83 圖二十六、石斑魚肌肉生長抑制基因啟動子重要調控區域之結合分析 84 圖二十七、石斑魚肌分化調節因子與肌肉生長抑制基因活性之調控分析 85 表目錄 表一、石斑魚肌肉生長抑制基因啟動子之轉錄調控區域 86 表二、本論文所使用之特異性引子 87 表三、動物實驗重量變化比率及比重量比較 88 表四、ANOVA計算PBS及PE1a動物實驗控制組之增重百分率差異 89 表五、ANOVA計算PBS控制組及PE1a1E實驗組之增重百分率差異 90 表六、ANOVA計算PE1a控制組及PE1a1E實驗組之增重百分率差異 91 表七、ANOVA計算各組誘導之冷螢光酶活性差異 92 表八、ANOVA計算pmstnp-luc及pmstnp-luc1235之冷螢光酶活性差異 93 表九、ANOVA比較pmstnp-luc1235及事先以2-Aminopurine處理之pmstnp-luc1235組別冷螢光酶活性差異 94 表十、ANOVA比較pmstnp-luc894及事先以2-Aminopurine處理之pmstnp-luc894組別冷螢光酶活性差異 95 表十一、石斑魚肌分化調節因子於各組織中的相對表現量 96 附圖目錄 附圖一、綠膿桿菌外毒素的蛋白功能 97 附圖二、免疫剔除技術可能誘發的機制圖 98 附圖三、石斑魚經免疫注射後血清之抗體力價 99 附圖四、神經壞死病毒對石斑魚肌肉生長抑制基因啟動子活性之調控 100 附圖五、石斑魚神經壞死病毒組成 101 附圖六、神經壞死病毒RNA對石斑魚肌肉生長抑制基因 啟動子活性之調控 102 附圖七、神經壞死病毒蛋白對石斑魚肌肉生長抑制基因 啟動子活性之調控 103 附圖八、雙股RNA引起基因表現變化之機制 104 附圖九、protein kinase R影響基因轉錄轉譯之機制圖 106 附圖十、肌肉生長抑制基因啟動子最重要調節區域之定量分析 107

    [1]Acosta, J., Carpio, Y., Borroto, I., González, O., and Estrada M.P. Myostatin gene
    silenced by RNAi show a zebrafish giant phenotype. J. Biotechnol. 119,
    324-331 (2005)

    [2]Alvarez-Pellitero, P. Fish immunity and parasite infections: from innate immunity to
    immunoprophylactic prospects. Vet. Immunol. Immunopathol. 126, 171-198
    (2008)

    [3]Bergstrom, D.A., Penn, B.H., Strand, A., Perry, L.S., Rudnicki, M.A. and Tapscott, J.
    Promoter-specific regulation of MyoD binding and signal transduction cooperate to pattern gene expression. Mol. Cell. 9, 587-600 (2002)

    [4]Chalfie, M., Tu, Y., Euskirchen, G.,Ward, W.W., and Prasher, D.C. Green fluorescent
    protein as a marker for gene expression. Science. 263, 802-8055 (1994)

    [5]Chaudhary, J., Cupp, A.S., and Skinner, M.K. Role of basic-helix-loop-helix transcription factors in Sertoli cell differentiation: identification of an E-box response element in the transferrin promoter. Endocrinology. 138, 667-675 (1997)

    [6]Chaudhary, J. and Skinner M.K. Basic helix-loop-helix proteins can act at the E-box
    within the serum response element of the c-fos promoter to influence hormone-induced promoter activation in Sertoli cells. Mol. Endocrinol. 13, 774-786 (1999)

    [7]Chen, Y.M, Wei, C.Y., Chien, C.H., Chang H.W, Huang S.I, Yang H.L, and Chen T.Y. Myostatin gene organization and nodavirus-influenced expression in orange-spotted grouper (Epinephelus coioides). Comp. Biochem. Physiol. D, Genomics. Proteomics. 2, 215-227 (2007)

    [8]Chi, S.C., Lin, S.C., Su, H.M., and Hu, W.W. Temperature effect on nervous necrosis virus infection in grouper cell line and in grouper larvae. Virus. Res. 63, 107-114 (1999)

    [9]Cleary, M.A., Stern, S., Tanaka, M., and Herr, W. Differential positive control by Oct-1 and Oct-2: activation of a transcriptionally silent motif through Oct-1 and VP16 corecruitment. Genes. Dev. 7, 72-83 (1993)

    [10]Cody, C.W., Prasher, D.C., Westler, W.M., Prendergast, F.G., and Ward, W.W. Chemical structure of the hexapeptide chromophore of the Aequorea green-fluorescent protein. Biochemistry. 32, 1212-1218 (1993)

    [11]Daugherty, A.L., McKee, M.L., FitzGerald, D.J., and Mrsny, R.J. Epithelial application of Pseudomonas aeruginosa exotoxin A results in a selective targeting to cells in the liver, spleen and lymph node. J. Control. Release. 65, 297-302 (2000)

    [12]Donnelly, J.J., Ulmer, J.B., Hawe, L.A., Friedman, A. SHI, X.P., Leander, K.R., Shiver, J.W., Oliff, A.I., Martinez, D. Montgomery, D. and Liu, M.A. Targeted delivery of peptide epitopes to class I major histocompatibility molecules by a modified Pseudomonas exotoxin. Proc. Natl. Acad. Sci. U. S. A. 90, 3530-3534 (1993)

    [13]Du, R., Chen, Y.F., An, X.R., Yang, X.Y., Ma, Y., Zhang, L., Yuan, X.L., Chen, L.M., and Qin, J. Cloning and sequence analysis of myostatin promoter in sheep. DNA. Seq. 16, 412-417 (2005)

    [14]Du, S.J., Gao, J., Anyangwe, V. Muscle-specific expression of myogenin in zebrafish embryos is controlled by multiple regulatory elements in the promoter. Comp. Biochem. Physiol. B, Biochem. Mol. Biol. 134, 123-134 (2003)

    [15]Escobar, J., Van Alstine, W.G., Baker, D.H., and Johnson, R.W. et al. Decreased protein accretion in pigs with viral and bacterial pneumonia is associated with increased myostatin expression in muscle. J. Nutr. 134, 3047-3053 (2004)

    [16]Gao, J., Li, Z., and Paulin, D. A novel site, Mt, in the human desmin enhancer is necessary for maximal expression in skeletal muscle. J. Biol. Chem. 273, 6402-6409 (1998)

    [17]Gonzalez-Cadavid, N.F., Taylor, W.E., Yarasheski, K., Sinha-Hikim, I., Ma, K., Ezzat, S., Shen, R., Lalani, R., Asa, S., Mamita, M., Nair, G., Arver, S., and Bhasin, S. Organization of the human myostatin gene and expression in healthy men and HIV-infected men with muscle wasting. Proc. Natl. Acad. Sci. U. S. A. 95, 14938-14943 (1998)

    [18]Goodbourn, S., Didcock, L., and Randall, R.E. Interferons: cell signalling, immune modulation, antiviral response and virus countermeasures. J. Gen. Virol. 81, 2341-2364 (2000)

    [19]Guttridge, D.C., Mayo, M.W., Madrid, L.V., Wang, C.Y. and Baldwin, A.S. NF- B-Induced Loss of MyoD Messenger RNA: Possible Role in Muscle Decay and Cachexia. Science. 289, 2363-2366 (2000)

    [20]Hseuh, K.H., and Shang, H.F. Engineering of Pseudomonas exotoxin A into useful proteins for disease treatment. J. Chinese. Biochem. Soc. 23, 135-151 (1994)

    [21]Jafar-Nejad, H. and Bellen, H.J. Gfi/Pag-3/senseless zinc finger proteins: a unifying theme? Mol. Cell. Biol. 24, 8803-8812 (2004)

    [22]Kambadur, R., Sharma, M., Smith, T.P.L., and Bass, J.J. Mutations in myostatin (GDF8) in double-muscled Belgian Blue and Piedmontese cattle. Genome Res. 7, 910-916 (1997)

    [23]Karim, L., Coppieters, W., Grobet, L., Valentini, A., and Georges, M. Convenient genotyping of six myostatin mutations causing double-muscling in cattle using a multiplex oligonucleotide ligation assay. Anim. Genet. 31, 396-399 (2000)

    [24]Kerr, T., Roalson, E.H., and Rodgers, B.D. Phylogenetic analysis of the myostatin gene sub-family and the differential expression of a novel member in zebrafish. Evol. Dev. 7, 390-400 (2005)

    [25]Lassar, A.B., Buskin, J.N., Lockshon, D., Davis, R.L., Apone, S., Hauschka, S.D., and Weintraub, H. MyoD is a sequence-specific DNA binding protein requiring a region of myc homology to bind to the muscle creatine kinase enhancer. Cell. 58, 823-831 (1989)

    [26]Lu, L., Zhou, S.Y., Chen, C., Weng, S.P., Chan, S.M., and He, J.G. Complete genome sequence analysis of an iridovirus isolated from the orange-spotted grouper, Epinephelus coioides. Virology. 339, 81-100 (2005)

    [27]Maccatrozzo, L., Bargelloni, L., Radaelli, G., Mascarello, F., and Patarnello, T. Characterization of the myostatin gene in the gilthead seabream (Sparus aurata): sequence, genomic structure, and expression pattern. Mar. Biotechnol. 3, 223-230 (2001)

    [28]Malmgaard, L. Induction and regulation of IFNs during viral infections. J. Interferon. Cytokine. Res. 24, 439-454 (2004)

    [29]McPherron, A.C. and Lee, S.L. Double muscling in cattle due to mutations in the myostatin gene. Proc. Natl. Acad. Sci. U. S. A. 94, 12457-12461 (1997)

    [30]Melaine, N., Lienard, M.O., Elisabeth, G., Annick, R., Nathalie, D.R., and Bernard, J. Production of the antiviral proteins 2'5'oligoadenylate synthetase, PKR and Mx in interstitial cells and spermatogonia. J. Reprod. Immunol. 59, 53-60 (2003)

    [31]Mosher, D.S., Quignon, P., Bustamante, C.D., Sutter, N.B., Mellersh, C.S., Parker, H.G., and Ostrander, E.A. A mutation in the myostatin gene increases muscle mass and enhances racing performance in heterozygote dogs. PLoS. Genet. 3, 779-786 (2007)

    [32]Phillips, K. and Luisi, B. The virtuoso of versatility: POU proteins that flex to fit. J. Mol. Biol. 302, 1023-1039 (2000)

    [33]Pizza, M., Giuliani, M.M., Fontana, M.R., Monaci, E., Douce, G., Dougan, G., Mills, K.H., Rappuoli, R., and Del, G.G. Mucosal vaccines: non toxic derivatives of LT and CT as mucosal adjuvants. Vaccine. 19, 2534-2541 (2001)

    [34]Potthoff, M.J. and Olson, E.N. MEF2: a central regulator of diverse developmental programs. Development. 134, 4131-4140 (2007)

    [35]Salerno, M.S., Thomas, M., Forbes, D., Watson, T., Kambadur, R., and Sharma, M. Molecular analysis of fiber type-specific expression of murine myostatin promoter. Am. J. Physiol. Cell. Physiol. 287, C1031-C1040 (2004)

    [36]Samuel, C. E. Host genetic variability and West Nile virus susceptibility. Proc. Natl. Acad. Sci. U. S. A. 99, 11555-11557 (2002)

    [37]Samuel, C.E. Knockdown by RNAi-proceed with caution. Nat. Biotechnol. 22, 280-282 (2004)

    [38]Schuelke, M., Wagner, K.R., Stolz, L.E., HÜbner, C., Riebel, T., KÖmen, W., Braun,
    T., James, F.T., and Lee, S.J. Myostatin mutation associated with gross muscle
    hypertrophy in a child. N. Engl. J. Med. 350, 2682-2688 (2004)

    [39]Seliger, H.H. and McELROY, W.D. Spectral emission and quantum yield of firefly bioluminescence." Arch. Biochem. Biophys. 88, 136-141 (1960)

    [40]Sharma, M., Kambadur, R., Matthews, K.G., Somers, W.G., Devlin, G.P., Conaglen, J.V., Fowke, P.J., Bass, J.J. Myostatin, a transforming growth factor-beta superfamily member, is expressed in heart muscle and is upregulated in cardiomyocytes after infarct. J. Cell. Physiol. 180, 1-9 (1999)

    [41]Spiller, M.P., Kambadur, R., Jeanplong, F., Thomas, M., Martyn, J.K., Bass, J.J., and Sharma, M. The myostatin gene is a downstream target gene of basic helix-loop-helix transcription factor MyoD. Mol. Cell. Biol. 22, 7066-7082 (2002)

    [42]Stinckens, A., Luyten, T., Bijttebier, J., Van den Maagdenberg, K., Dieltiens, D., Janssens, S., De Smet, S., Georges, M., and Buys, N. Characterization of the complete porcine MSTN gene and expression levels in pig breeds differing in muscularity. Anim. Genet. 39, 586-596 (2008)

    [43]Vopalensky, V., Masek, T., Horvath, O., Vicenova, B., Mokrejs, M., and Pospisek, M. Firefly luciferase gene contains a cryptic promoter." RNA. 14, 1720-1729 (2008)

    [44]Weintraub, H., Tapscott, S.J., Davis, R.L., Thayer, M.J., Adam, M.A., Lassar, A.B., and Miller, A.D. Activation of muscle-specific genes in pigment, nerve, fat, liver, and fibroblast cell lines by forced expression of MyoD. Proc. Natl. Acad. Sci. U. S. A. 86, 5434-5438 (1989)

    [45]Whittemore, L.A., Song, K., Li, X., Aghajanian, J., Davies, M., Girgenrath, S., Hill, J.J., Jalenak, M., Kelley, P., Knight, A., Maylor, R., O' Hara, D., Pearson, A., Quazi, A., Ryerson, S., Tan, X.Y., Tomkinson, K.N., Veldman, G.M., Widom, A., Wright, J.F., Wudyka, S., Zhao, L., and Wolfman, N.M. Inhibition of myostatin in adult mice increases skeletal muscle mass and strength. Biochem. Biophys. Res. Commun. 300, 965-971 (2003)

    [46]Williams, B.R. PKR; a sentinel kinase for cellular stress. Oncogene. 18, 6112-6120 (1999)

    [47]Ye, H.Q., Chen, S.L., Sha, Z.X., and Liu, Y. Molecular cloning and expression analysis of the myostatin gene in sea perch (Lateolabrax japonicus). Mar. Biotechnol. 9, 262-272 (2007)

    [48]粘茂偉, 利用TR-PCR發展石斑魚神經壞死病毒次單位疫苗,國立成功大
    學生物科技研究所碩士論文,台南 (2003)。

    [49]魏志嶽, 石斑魚肌肉生長抑制素之基因選殖與功能分析,國立成功大學生物科技研究所碩士論文,台南 (2005)。

    [50]簡正修, 點帶石斑魚肌肉倍增基因功能分析與其基因啟動子之調節,國立成功大學生物科技研究所碩士論文,台南 (2007)。

    下載圖示 校內:2014-07-29公開
    校外:2014-07-29公開
    QR CODE