簡易檢索 / 詳目顯示

研究生: 夏瑪普哈
SHARMA, PRAKHAR
論文名稱: 銅中的自擴散行為:透過分子動力學研究空位缺陷和晶界的影響
Self-Diffusion Behavior in Copper: Influence of Vacancy Defects and Grain Boundaries via Molecular Dynamics
指導教授: 許文東
Hsu, Wen-Dung
學位類別: 碩士
Master
系所名稱: 工學院 - 尖端材料國際碩士學位學程
International Curriculum for Advanced Materials Program
論文出版年: 2025
畢業學年度: 113
語文別: 英文
論文頁數: 111
中文關鍵詞: 擴散率均方位移電遷移空隙體積
外文關鍵詞: Diffusivity , Mean Square Dispalcement, Electromigration, Copper , Void Volume
相關次數: 點閱:7下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 瞭解金屬材料中的自擴散機制,對提升微電子元件的可靠性、特別是降低電遷移所致之故障,至關重要。本研究以分子動力學(MD)方法,採用能有效描述多體交互作用的嵌入式原子模型(EAM)勢能函數,系統性探討銅(Cu)之自擴散行為。並以 LAMMPS 模擬套件進行大規模計算,分析空缺濃度、空缺簇形成與溫度對自擴散之影響,範圍涵蓋塊材與特定晶界——Σ13 與 Σ7。同時以多晶銅薄膜之示蹤擴散係數與活化能的實驗量測結果,對模擬進行驗證。
    本研究結果顯示,隨空缺濃度提高,原子擴散性明顯增強;然而在較高濃度下雖形成空缺簇,但簇本身基本上保持不動。特別地,早期形成之簇常鬆弛為穩定四面體(由4個空缺構成)結構;當此類四面體或更大的魔數簇(如由6與13個空缺構成)生成並持續存在時,會作為不移動的「固定吸收點」(immobile sinks),限制原子遷移,使後期均方位移(Mean Square Displacement, MSD)斜率趨於平坦,使反應速率與溫度的關係(Arrhenius linearity)不再呈現理想線性關係。
    沿 Σ13/Σ7 晶界上的擴散顯著高於固體塊材(bulk)中的擴散,這個特性突顯微觀結構對傳輸行為的關鍵影響。此一晶界內擴散高於塊材內擴散的擴散階層關係會直接影響電遷移行為,快速晶界通道加速了質量傳輸並使得線路損傷得更快;而塊材中的原子低移動性(特別是在魔數穩定化條件下)則促進了局部空位得累積與固定住空洞位置。這些研究結果得到了實驗數據的支持,顯示模擬與實際測量的擴散係數與活化能之間具有良好的一致性。綜合而言,本研究透過闡明空位簇與微觀結構通道(塊材與 Σ13/Σ7 晶界之不同)在熱與機械應力下如何主導原子得自擴散行為。而透過研究空位簇與晶界如何影響原子擴散,可以幫助工程師設計出更耐用的電子元件,特別是在高溫或高電流密度下,減少因電遷移造成的損壞。

    Understanding self-diffusion in metallic systems is crucial for improving the reliability of microelectronic devices, particularly by mitigating electromigration-related failures. This study presents a comprehensive molecular dynamics (MD) investigation of self-diffusion in copper (Cu) using an Embedded Atom Model (EAM) potential, widely employed for metals because it captures many-body interactions. Large-scale simulations were performed in LAMMPS to systematically analyze the effects of vacancy concentration, vacancy-cluster formation, and temperature on self-diffusion in both the bulk and along selected grain boundaries, specifically Σ13 and Σ7. Experimental measurements of tracer-diffusion coefficients and activation energies in polycrystalline Cu films were used to validate the simulations.
    The results show that increasing vacancy concentration significantly enhances atomic diffusivity. Although vacancy clusters form at higher concentrations, the clusters themselves remain largely immobile. In particular, early-stage clusters frequently relax into a stable tetrahedral (4-vacancy) structure; when such tetrahedra—or larger magic-number clusters (6 and 13)—form and persist, they act as immobile sinks that restrict mobility, flatten late-time MSD slopes, and lead to deviations from ideal Arrhenius linearity.
    Diffusion along Σ13/Σ7 grain boundaries is substantially higher than in the bulk, underscoring the critical role of microstructure in transport. This hierarchy of GB is greater than the bulk diffusivity directly affects electromigration and thermomigration, which is responsible for the fast GB pathways that accelerate mass flux and damage transport, while reduced bulk mobility—especially under magic-number stabilization—promotes localized vacancy accumulation and void pinning. These findings are supported by experimental data, showing good agreement between simulated and measured diffusion coefficients and activation energies. By elucidating how vacancy clusters and microstructural pathways (bulk vs. Σ13/Σ7 GBs) govern self-diffusion under thermal and mechanical stress, this work provides insights for designing more robust interconnects with improved resistance to electromigration-induced failure.

    CHAPTER 1 1 INTRODUCTION 1 CHAPTER 2 5 LITERATURE REVIEW 5 2.1 Electromigration 5 2.2 Fundamentals of Diffusion 7 2.3 Diffusion in Copper 9 2.4 Grain Boundary Diffusion and Vacancy Cluster Interaction 12 CHAPTER 3 16 METHODOLOGY 16 3.1 Model Preparation 17 3.2 Simulation Details 21 3.3 Data collection 22 CHAPTER 4 27 RESULTS 27 PART 1: BULK MODELS 28 4.1 Monovacancy 28 4.2 0.1% of Vacancy Concentration Model 36 4.3 Void and Two-Voids with Distance Models Configuration 71 PART 2: GRAIN BOUNDARY MODELS 80 4.4 Σ7 Grain Boundary 80 4.5 Σ13 Grain Boundary 85 CHAPTER 5 90 CONCLUSION 90 Future Work 91 REFERENCES 93

    [1] T. Usui, H. Nasu, T. Watanabe, H. Shibata, T. Oki, and M. Hatano, “Electromigration diffusion mechanism of electroplated copper and cold/hot two-step sputter-deposited aluminum-0.5-wt% copper damascene interconnects,” J Appl Phys, vol. 98, no. 6, Sep. 2005, doi: 10.1063/1.2009061.
    [2] J. R. Black, “Electromigration—A brief survey and some recent results,” IEEE Trans Electron Devices, vol. 16, no. 4, pp. 338–347, Apr. 1969, doi: 10.1109/T-ED.1969.16754.
    [3] I. A. Blech, “Electromigration in thin aluminum films on titanium nitride,” J Appl Phys, vol. 47, no. 4, pp. 1203–1208, 1976, doi: 10.1063/1.322842.
    [4] P. Schweizer et al., “Atomic scale volume and grain boundary diffusion elucidated by in situ STEM,” Nat Commun, vol. 14, no. 1, Dec. 2023, doi: 10.1038/s41467-023-43103-7.
    [5] H. Ceric, R. L. De Orio, J. Cervenka, and S. Selberherr, “Copper microstructure impact on evolution of electromigration induced voids,” in International Conference on Simulation of Semiconductor Processes and Devices, SISPAD, 2009. doi: 10.1109/SISPAD.2009.5290222.
    [6] Z. Cui, X. Fan, and G. Zhang, “Implementation of Fully Coupled Electromigration Theory in COMSOL,” in Proceedings - Electronic Components and Technology Conference, Institute of Electrical and Electronics Engineers Inc., 2022, pp. 233–238. doi: 10.1109/ECTC51906.2022.00046.
    [7] H. Ceric, R. L. de Orio, and S. Selberherr, “Statistical study of electromigration in gold interconnects,” Microelectronics Reliability, vol. 147, Aug. 2023, doi: 10.1016/j.microrel.2023.115061.
    [8] T. Usui, H. Nasu, T. Watanabe, H. Shibata, T. Oki, and M. Hatano, “Electromigration diffusion mechanism of electroplated copper and cold/hot two-step sputter-deposited aluminum-0.5-wt% copper damascene interconnects,” J Appl Phys, vol. 98, no. 6, Sep. 2005, doi: 10.1063/1.2009061.
    [9] “Electromigration_brief_survey_and_some_recent_results”.
    [10] Z. Cui, X. Fan, Y. Zhang, S. Vollebregt, J. Fan, and G. Zhang, “Coupling model of electromigration and experimental verification – Part I: Effect of atomic concentration gradient,” J Mech Phys Solids, vol. 174, May 2023, doi: 10.1016/j.jmps.2023.105257.
    [11] Z. Cui, X. Fan, Y. Zhang, S. Vollebregt, J. Fan, and G. Zhang, “Coupling model of electromigration and experimental verification – Part II: Impact of thermomigration,” J Mech Phys Solids, vol. 174, May 2023, doi: 10.1016/j.jmps.2023.105256.
    [12] H. Ceric, R. L. De Orio, W. Zisser, and S. Selberherr, “Modeling of microstructural effects on electromigration failure,” in AIP Conference Proceedings, American Institute of Physics Inc., 2014, pp. 99–113. doi: 10.1063/1.4881344.
    [13] J. P. Dekker, A. Lodder, and J. Van Ek, “Theory for the electromigration wind force in dilute alloys,” 1997.
    [14] Z. Cui, X. Fan, and G. Zhang, “Molecular dynamic study for concentration-dependent volume relaxation of vacancy,” Microelectronics Reliability, vol. 120, May 2021, doi: 10.1016/j.microrel.2021.114127.
    [15] P. Yi, T. T. Sasaki, S. Eswarappa Prameela, T. P. Weihs, and M. L. Falk, “The interplay between solute atoms and vacancy clusters in magnesium alloys,” Acta Mater, vol. 249, May 2023, doi: 10.1016/j.actamat.2023.118805.
    [16] S. M. Rassoulinejad-Mousavi, Y. Mao, and Y. Zhang, “Evaluation of copper, aluminum, and nickel interatomic potentials on predicting the elastic properties,” J Appl Phys, vol. 119, no. 24, Jun. 2016, doi: 10.1063/1.4953676.
    [17] M. I. Mendelev, C. Deng, C. A. Schuh, and D. J. Srolovitz, “Comparison of molecular dynamics simulation methods for the study of grain boundary migration,” Model Simul Mat Sci Eng, vol. 21, no. 4, Jun. 2013, doi: 10.1088/0965-0393/21/4/045017.
    [18] V. Fotopoulos et al., “Structure and Migration Mechanisms of Small Vacancy Clusters in Cu: A Combined EAM and DFT Study,” Nanomaterials, vol. 13, no. 9, May 2023, doi: 10.3390/nano13091464.
    [19] A. Suzuki and Y. Mishin, “Interaction of Point Defects with Grain Boundaries in fcc Metals,” 2003.
    [20] A. Suzuki and Y. Mishin, “Atomistic Modeling of Point Defects and Diffusion in Copper Grain Boundaries,” 2003.
    [21] M. D. Starostenkov, G. M. Poletaev, and R. Y. Rakitin, “STABILITY OF VACANCY CLUSTERS IN FCC METALS,” 2015. [Online]. Available: https://www.researchgate.net/publication/265219170
    [22] J. Han, V. Vitek, and D. J. Srolovitz, “Grain-boundary metastability and its statistical properties,” Acta Mater, vol. 104, pp. 259–273, Feb. 2016, doi: 10.1016/j.actamat.2015.11.035.
    [23] A. I. Kartamyshev, A. G. Lipnitskii, V. N. Maksimenko, A. V. Vyazmin, I. V. Nelasov, and D. O. Poletaev, “N-body potential for simulating lattice defects and diffusion in copper,” Comput Mater Sci, vol. 228, Sep. 2023, doi: 10.1016/j.commatsci.2023.112284.
    [24] S. K. Lin, Y. C. Liu, S. J. Chiu, Y. T. Liu, and H. Y. Lee, “The electromigration effect revisited: Non-uniform local tensile stress-driven diffusion,” Sci Rep, vol. 7, no. 1, Dec. 2017, doi: 10.1038/s41598-017-03324-5.
    [25] M. Kabir, A. Mookerjee, and A. K. Bhattacharya, “Structure and stability of copper clusters : A tight-binding molecular dynamics study,” 2003.
    [26] S. Zhao, Y. Zhang, and W. J. Weber, “Stability of vacancy-type defect clusters in Ni based on first-principles and molecular dynamics simulations,” Scr Mater, vol. 145, pp. 71–75, Mar. 2018, doi: 10.1016/j.scriptamat.2017.10.003.
    [27] N. Castin, M. I. Pascuet, and L. Malerba, “Mobility and stability of large vacancy and vacancy-copper clusters in iron: An atomistic kinetic Monte Carlo study,” Journal of Nuclear Materials, vol. 429, no. 1–3, pp. 315–324, Oct. 2012, doi: 10.1016/j.jnucmat.2012.06.020.
    [28] E. Martínez and B. P. Uberuaga, “Mobility and coalescence of stacking fault tetrahedra in Cu,” Sci Rep, vol. 5, Mar. 2015, doi: 10.1038/srep09084.
    [29] A. G. Frøseth, H. Van Swygenhoven, and P. M. Derlet, “Developing realistic grain boundary networks for use in molecular dynamics simulations,” Acta Mater, vol. 53, no. 18, pp. 4847–4856, Oct. 2005, doi: 10.1016/j.actamat.2005.06.032.
    [30] Y. N. Osetsky ’, M. Victoria, A. Serra, S. I. Golubov ’, and V. Priego, “Computer simulation of vacancy and interstitial clusters in bee and fee metals,” 1997.
    [31] M. Prasad and T. Sinno, “An Internally Consistent Approach for Modeling Solid-State Aggregation: I. Atomistic Calculations of Vacancy Clustering in Silicon.”
    [32] T. Frolov and Y. Mishin, “Molecular dynamics modeling of self-diffusion along a triple junction,” Phys Rev B Condens Matter Mater Phys, vol. 79, no. 17, May 2009, doi: 10.1103/PhysRevB.79.174110.
    [33] T. Kwok, P. S. Ho MM Thomas J, and S. Yip, “Molecular-dynamics studies of grain-boundary diffusion. II. Vacancy migration, diffusion mechanism, and kinetics.”
    [34] W. C. Liu, C. H. Woo, and H. Huang, “Diffusion and clustering on the titanium (0001) surface,” KLUWER/ESCOM, 1999.
    [35] D. Chen, S. Xu, and Y. Kulkarni, “Atomistic mechanism for vacancy-enhanced grain boundary migration,” Phys Rev Mater, vol. 4, no. 3, Mar. 2020, doi: 10.1103/PhysRevMaterials.4.033602.
    [36] T. Kato, K. Suzuki, and H. Miura, “Effect of the Crystallinity on the Electromigration Resistance of Electroplated Copper Thin-Film Interconnections,” J Electron Packag, vol. 139, no. 2, Jun. 2017, doi: 10.1115/1.4036442.
    [37] A. Suzuki and Y. Mishin, “Interaction of Point Defects with Grain Boundaries in fcc Metals,” 2003.
    [38] S. M. Rassoulinejad-Mousavi, Y. Mao, and Y. Zhang, “Evaluation of copper, aluminum, and nickel interatomic potentials on predicting the elastic properties,” J Appl Phys, vol. 119, no. 24, Jun. 2016, doi: 10.1063/1.4953676.
    [39] Q. Peng, X. Zhang, and G. Lu, “Structure, mechanical and thermodynamic stability of vacancy clusters in Cu,” Model Simul Mat Sci Eng, vol. 18, no. 5, 2010, doi: 10.1088/0965-0393/18/5/055009.
    [40] D. A. Andersson and S. I. Simak, “Monovacancy and divacancy formation and migration in copper: A first-principles theory,” Phys Rev B Condens Matter Mater Phys, vol. 70, no. 11, 2004, doi: 10.1103/PhysRevB.70.115108.
    [41] L. Y. Nemirovich-Danchenko, A. G. Lipnitskiǐ, and S. E. Kul’kova, “Vacancies and their complexes in FCC metals,” Physics of the Solid State, vol. 49, no. 6, pp. 1079–1085, Jun. 2007, doi: 10.1134/S1063783407060108.
    [42] Y.-C. Liu and S.-K. Lin, “A Critical Review on the Electromigration Effect, the Electroplastic Effect, and Perspectives on Effect of Electric Current upon Alloy Phase Stability.”
    [43] Y. Mishin, M. J. Mehl, D. A. Papaconstantopoulos, A. F. Voter, and J. D. Kress, “Structural stability and lattice defects in copper: Ab initio, tight-binding, and embedded-atom calculations,” Phys Rev B Condens Matter Mater Phys, vol. 63, no. 22, pp. 2241061–22410616, 2001, doi: 10.1103/PhysRevB.63.224106.
    [44] M. R. So, Y. Mishin, and A. F. Voter, “Diffusion mechanisms in Cu grain boundaries.”
    [45] L. V. Redel’, Y. Y. Gafner, and S. L. Gafner, “Role of ‘magic’ numbers in structure formation in small silver nanoclusters,” Physics of the Solid State, vol. 57, no. 10, pp. 2117–2125, Oct. 2015, doi: 10.1134/S106378341510025X.
    [46] R. K. Koju and Y. Mishin, “Atomistic study of grain-boundary segregation and grain-boundary diffusion in Al-Mg alloys,” Acta Mater, vol. 201, pp. 596–603, Dec. 2020, doi: 10.1016/j.actamat.2020.10.029.
    [47] C. Mottet, G. Tr6glia, and B. Legrand, “New magic numbers in metallic clusters: an unexpected metal dependence,” 1997.
    [48] A. Kumar Panda, R. Divakar, A. Singh, R. Thirumurugesan, and P. Parameswaran, “Molecular dynamics studies on formation of stacking fault tetrahedra in FCC metals,” Comput Mater Sci, vol. 186, Jan. 2021, doi: 10.1016/j.commatsci.2020.110017.
    [49] H. Sun and L. K. Béland, “A molecular dynamics study of path-dependent grain boundary properties in nanocrystals prepared using different methods,” Scr Mater, vol. 205, Dec. 2021, doi: 10.1016/j.scriptamat.2021.114183.
    [50] Y. N. Osetsky ’, M. Victoria, A. Serra, S. I. Golubov ’, and V. Priego, “Computer simulation of vacancy and interstitial clusters in bee and fee metals,” 1997.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE