簡易檢索 / 詳目顯示

研究生: 田慶安
Tian, Ching-An
論文名稱: 仿生離子對雙親分子與磷脂醯膽鹼液胞的結構、力學、及熱力學穩定性之對照分析
Comparisons of the Structures, Mechanics and Thermodynamic Stabilities for Biomimetic Ion Pair Amphiphile and Phosphatidylcholine Vesicles
指導教授: 邱繼正
Chiu, Chi-Cheng
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 88
中文關鍵詞: 磷脂醯膽鹼離子對雙親分子分子動力學模擬膜融合自由能
外文關鍵詞: phosphatidylcholine, ion pair amphiphile, molecular dynamics, membrane fusion free energy
相關次數: 點閱:103下載:14
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 離子對雙親分子 (ion pair amphiphile, IPA) 之結構與磷脂質相似,是由兩種相異電荷之界面活性劑組成的複合分子,其成本低廉可作為仿磷脂分子。由IPA自組裝而成之陰陽離子液胞 (catanionic vesicle) 可廣泛應用於不同領域,例如藥妝、基因治療和藥物輸送等,調控IPA液胞之穩定性對於其應用發展是為重要關鍵。然目前鮮有研究針對IPA液胞與磷脂液泡之特性進行比較分析,本研究利用分子動態模擬從微觀的角度,針對長烷鏈三甲基銨鹽-長烷鏈硫酸鹽 (CnTMA+-CnS-) IPA複合分子以及磷脂醯膽鹼 (DCnPC) PC,探討其組成液泡內和液泡間的穩定度。比較IPA與PC組成之雙層膜結構,由徑向分佈函數 (RDF)、分子佔據面積、序參數 (SCD) 和間扭構形的分析顯示,IPA雙層膜具有較緊密之分子排列、較高的碳鏈序度、以及較強的機械模式。在雙層膜表面上,IPA雙層膜和水分子形成較少的氫鍵,並有較低的電位能,是由於PC分子擁有較多的親水性官能基。此外,PC分子的親水性頭基的擾動與它的疏水性碳鏈的運動有密切關聯,進一步影響水分子在親水區域的滯留時間 (τ);然而因為PC和IPA之間親水基團結構不同,此現象在IPA雙層膜上並不顯著。我們進一步利用自由能微擾 (FEP) 計算雙親分子從IPA雙層膜溶至水溶液中所需的自由能,結果顯示長烷基鏈可以提升雙層膜之熱力學穩定度;但與PC雙層膜相比,IPA仿生膜仍具有較差的穩定度。另一方面,我們計算膜融合所需要的自由能來探討液泡間的穩定度,發現相較於PC微脂粒,IPA液胞於融合過程中,形成stalk 和fusion pore所需的自由能較低,故可推測IPA仿生液胞之液胞間穩定性較微脂粒為低。本研究自分子層次上比較PC微脂粒和IPA液胞之微觀特性,並提供未來設計仿生系統的有益資訊。

    Ion pair amphiphile (IPA), a molecular complex composed of two oppositely charged surfactants, is a biomimetic amphiphile that has been proposed as a low-cost substitute for phospholipid. IPA can self-assemble into catanionic vesicles that have potentials in various fields such as cosmetic, gene therapy and drug delivery, etc. Modulating the stability of IPA vesicle is critical for its application development. Yet, there have been limited studies on the comparison between the phospholipid bilayers and the corresponding IPA membranes for the biomimetic characterizations. Here, we combined the atomistic and coarse-grained molecular dynamic simulations to investigate the intra- and inter-vesicular stabilities of vesicles composed of alkyltrimethylammonium-alkylsulfate (CnTMA+-CnS-) IPA complex and phosphatidylcholine (DCnPC). Due to the difference in the hydrophilic groups between PC and IPA, IPA bilayers exhibit denser molecular packing and higher alkyl chain ordering than the corresponding PC bilayers, as revealed by the radial distribution functions (RDF), molecular area, deuterium order parameter (SCD), and gauche conformation analyses. Meanwhile, IPA bilayers possess higher mechanical moduli, including the area compressibility modulus (KA), the molecular tilt modulus (χ), and the effective bending rigidity (KCeff) than PC bilayers. At the water-bilayer interface, IPA bilayers form fewer hydrogen bonds (H-bonds) with water and possess lower electrostatic potential than the corresponding PC bilayers, owing to more hydrophilic functional groups within a PC molecule. For the PC bilayers, the motion of hydrophobic alkyl chains closely correlate with the hydrophilic head groups motion, and longer alkyl chains prolong the water residence time (τ) at the bilayer surface. Such phenomena are less pronounced for an IPA complex, due to the hydrophilic group variations. Furthermore, we calculated the desorption free energy from the bilayer to bulk solution via the free energy perturbation (FEP) for IPA systems. Our results showed that IPA with longer alkyl chain enhances the thermodynamic stability of vesicular bilayers; yet, compared with PC membranes, IPA bilayers are still less thermodynamically stable. To probe inter-vesicular stability of IPA vesicles, we measured the membrane fusion free energy using the coarse-grained SDK model and found that IPA vesicles have lower free energy barriers for the stalk formation and the fusion pore opening compared with PC liposome. Through the comparison between PC and biomimetic IPA vesicles at the molecular level, the combined results can provide insights for future designs of biomimetic membrane systems.

    摘要 i Abstract ii Acknowledgements iv Table of Contents v List of Tables viii List of Figures ix List of Symbols xv 1 INTRODUCTION 1 1.1 Phospholipid 1 1.2 Biomimetic Ion Pair Amphiphile 2 1.3 Bilayer Phases 3 1.4 Molecular Simulation Studies of Bilayer Systems 5 1.5 Lipid Motion within Bilayer Revealed by Simulation 8 1.6 Coarse-Grained Molecular Simulation 10 1.7 Membrane Fusion 11 1.8 Motivation 13 2 METHODS 14 2.1 Molecular Dynamic Simulation 14 2.1.1 All-Atom Simulation Detail 14 2.1.2 Coarse-Grained Force Field 16 2.1.3 Parameterization for IPA complex 18 2.1.4 Vesicle Self-Assembly 20 2.2 Membrane Structural Properties 22 2.2.1 Radial Distribution Function 22 2.2.2 Transverse Density Profiles and Membrane Thickness 22 2.2.3 Lateral Molecular Area 23 2.2.4 Alkyl Chain Tilt Angle 23 2.2.5 Deuterium Order Parameter 24 2.2.6 Gauche Fraction 24 2.3 Phase Transition 25 2.4 Water − Bilayer Interface 27 2.4.1 Hydrogen Bonding 27 2.4.2 Water Orientation at Interface 27 2.4.3 Electrostatic Potential 28 2.4.4 Water Residence Time 28 2.4.5 Rotational Autocorrelation Function 29 2.5 Mechanical Properties 30 2.5.1 Area Compressibility Modulus 30 2.5.2 Molecular Tilt Modulus 30 2.5.3 Splay Modulus and Effective Bending Rigidity 31 2.6 Free Energy Calculation 32 2.6.1 Free Energy Perturbation 32 2.6.2 Membrane Fusion 35 3 RESULTS AND DISCUSSION 39 3.1 PC/IPA Bilayer Phase Transition 39 3.2 PC/IPA Bilayers Properties 42 3.2.1 Bilayer Structural Properties 44 3.2.2 Bilayer Hydrophobic region 48 3.2.3 Mechanical Properties 53 3.2.4 Water − Bilayer Interface 55 3.2.5 Water Dynamics on the Bilayer Surface 61 3.2.6 Thermodynamics Stability 64 3.3 Inter-Vesicular Properties 66 3.3.1 Parameterization Based on Phase Properties 66 3.3.2 Self-Assembly and Vesicle Formation 69 3.3.3 Membrane Fusion Free Energy 71 4 CONCLUSION 75 REFERENCES 78

    [1] W.-H. Lee, Y.-L. Tang, T.-C. Chiu, Y.-M. Yang, Synthesis of Ion-Pair Amphiphiles and Calorimetric Study on the Gel to Liquid-Crystalline Phase Transition Behavior of Their Bilayers, J. Chem. Eng. Data 60 (4) (2015) 1119–1125.
    [2] C.-C. Chen, C.-A. Tian, C.-C. Chiu, The Effects of Alkyl Chain Combinations on the Structural and Mechanical Properties of Biomimetic Ion Pair Amphiphile Bilayers, Bioengineering 4 (4) (2017) 84.
    [3] W. Humphrey, A. Dalke, K. Schulten, VMD: Visual Molecular Dynamics, J. Mol. Graph. 14 (1) (1996) 33–38.
    [4] S. Leekumjorn, A. K. Sum, Molecular studies of the gel to liquid-crystalline phase transition for fully
    hydrated DPPC and DPPE bilayers, Biochim. Biophys. Acta 1768 (2) (2007) 354–365.
    [5] H. R. Marsden, I. T. A. Kros, Model systems for membrane fusion, Chem. Soc. Rev. 40 (2011) 1572–1585.
    [6] S. Kawamoto, M. L. Klein, W. Shinoda, Coarse-grained molecular dynamics study of membrane fusion:
    Curvature effects on free energy barrier along the stalk mechanism, J. Chem. Phys. 143 (2015) 243112.
    [7] W. Shinoda, R. DeVane, M. L Klein, Zwitterionic Lipid Assemblies: Molecular Dynamics Studies of
    Monolayers, Bilayers, and Vesicles Using a New Coarse Grain Force Field, J. Phys. Chem. B 114 (2010) 6836–6849.
    [8] S. Kawamoto, W. Shinoda, Free energy analysis along the stalk mechanism on membrane fusion, Soft Matter 10 (2014) 3048–3054.
    [9] D. Marsh, CRC Handbook of Lipid Bilayers, 1st Edition, CRC press, Boca Raton, FL, 1990.
    [10] J. R. Silvius, Thermotropic Phase Transitions of Pure Lipids in Model Membranes and Their Modifications by Membrane Proteins, John Wiley & Sons, Inc., New York, 1982.
    [11] G. van Meer, D. R. Voelker, G. W. Feigenson, Membrane lipids: where they are and how they behave, Nat. Rev. Mol. Cell Biol. 9 (2008) 112–124.
    [12] G. Gregoriadis, A. T. Florence, Lipsomes in Drug Delivery, Drugs 45 (1993) 15–28.
    [13] M. J. Rosen, J. T. Kunjappu, Surfactants and Interfacial Phenomena, 4th Edition, Wiley-Interscience, Hoboken, 2004.
    [14] S. M. Moghimi, A. C. Hunter, J. C. Murray, Nanomedicine: current status and future prospects, FASEB J. 19 (3) (2005) 311–330.
    [15] D. D. Lasic, Novel applications of liposomes, Trends Biotechnol. 16 (1998) 307–321.
    [16] I. Ahmad, M. Longenecker, J. Samue, T. M. Allen, Antibody-targeted Delivery of Doxorubicin Entrapped in Sterically Stabilized Liposomes Can Eradicate Lung Cancer in Mice, Cancer Res. 53 (1993) 1484–1488.
    [17] E. Kaler, A. Murthy, B. Rodriguez, J. Zasadzinski, Spontaneous Vesicle Formation in Aqueous Mixtures
    of Single-Tailed Surfactants, Science 245 (1989) 1371–1374.
    [18] C. Tondre, C. Caillet, Properties of the amphiphilic films in mixeded cationic-anionis vesicles, Adv.
    Colloid Interface Sci. 93 (2001) 115–134.
    [19] E. F. Marques, O. Regev, A. Khan, B. Lindman, Self-organization of double-chained and pseudodouble-
    chained surfactants: counterion and geometry effects, Adv. Colloid Interface Sci. 100 (2003) 83–104.
    [20] A.-T. Kuo, C.-H. Chang, Recent Strategies in the Development of Catanionic Vesicles, J. Oleo Sci. 65 (5) (2016) 377–384.
    [21] H. Fukuda, K. Kawata, H. Okuda, S. L. Regen, Bilayer-forming ion pair amphiphiles from single-chain surfactants, J. Am. Chem. Soc. (1990) 1635–1637.
    [22] K. Hirano, H. Fukuda, S. L. Regen, Polymerizable ion pair amphiphiles, J. Am. Chem. Soc. 112 (1991) 1045–1047.
    [23] S.-J. Yeh, Y.-M. Yang, C.-H. Chang, Cosolvent Effects on the Stability of Catanionic Vesicles Formed from Ion-Pair Amphiphiles, Langmuir 21 (2005) 6179–6184.
    [24] Y.-S. Liu, C.-F. Wen, Y.-M. Yang, Development of ethosome-like catanionic vesicles for dermal drug
    delivery, J. Taiwan Inst. Chem. Eng. 43 (6) (2012) 830–838.
    [25] C.-W. Chiu, C.-H. Chang, Y.-M. Yang, Gelation of ethosome-like catanionic vesicles by water-soluble
    polymers: ethanol and cholesterol effects, Soft Matter 9 (31) (2013) 7628–7636.
    [26] C.-H. Lee, Y.-M. Yang, C.-H. Chang, Enhancing physical stability of positively charged catanionic vesicles in the presence of calcium chloride via cholesterol-induced fluidic bilayer characteristic, Colloid Polym. Sci. 292 (10) (2014) 2519–2527.
    [27] A.-T. Kuo, C.-H. Chang, Cholesterol-induced condensing and disordering effects on a rigid catanionic bilayer: a molecular dynamics study, Langmuir 30 (1) (2014) 55–62.
    [28] F.-Y. Huang, C.-C. Chiu, Interplay between alkyl chain asymmetry and cholesterol addition in the rigid ion pair amphiphile bilayer systems, J. Chem. Phys. 146 (2017) 035102.
    [29] C.-J. Wu, A.-T. Kuo, C.-H. Lee, Y.-M. Yang, C.-H. Chang, Fabrication of positively charged catanionic vesicles from ion pair amphiphile with double-chained cationic surfactant, Colloid Polym. Sci. 292 (3) (2014) 589–597.
    [30] S. A. Walker, J. A. Zasadzinski, Electrostatic Control of Spontaneous Vesicle Aggregation, Langmuir 13 (1997) 5076–5081.
    [31] A.-T. Kuo, C.-H. Chang, W. Shinoda, Molecular Dynamics Study of Catanionic Bilayers Composed of Ion Pair Amphiphile with Double-Tailed Cationic Surfactant, Langmuir 28 (21) (2012) 8156–8164.
    [32] E. Soussan, S. Cassel, M. Blanzat, I. Rico-Lattes, Drug delivery by soft matter: matrix and vesicular carriers, Angew. Chem. Int. Ed. Engl. 48 (2) (2009) 274–288.
    [33] T. Bramer, N. Dew, K. Edsman, Pharmaceutical applications for catanionic mixtures, J. Pharm. Pharmacol. 59 (10) (2007) 1319–1334.
    [34] C.-H. Huang, S. Li, Calorimetric and molecular mechanics studies of the thermotropic phase behavior of membrane phospholipids, Biochim. Biophys. Acta 1422 (1999) 273–307.
    [35] H. Heller, M. Schaefer, K. Schulten, Molecular Dynamics Simulation of a Bilayer of 200 Lipids in the Gel and in the Liquid-Crystal Phases, J. Phys. Chem. B 97 (1993) 8343–8360.
    [36] K. Uppulury, P. S. Coppock, J. T. Kindt, Molecular Simulation of the DPPE Lipid Bilayer Gel Phase: Coupling between Molecular Packing Order and Tail Tilt Angle, J. Phys. Chem. B 119 (2015) 8725–8733.
    [37] S. J. Martini, J. Risselada, A. E. Mark, Simulation of gel phase formation and melting in lipid bilayers using a coarse-grained model, Chem. Phys. Lipid 135 (2005) 223–244.
    [38] T. Nagaia, Y. Okamoto, Replica-exchange molecular dynamics simulation of a lipid bilayer system with a coarse-grained model, Mol. Simul. 38 (2012) 437–441.
    [39] K. Tu, D. J. Tobias, J. K. Blasie, M. L. Klein, Molecular dynamics investigation of the structure of a
    fully hydrated gel-phase dipalmitoylphosphatidylcholine bilayer, Biophys. J. 70 (1996) 598–608.
    [40] H. M. McConnell, R. D. Kornber, Inside-outside transitions of phospholipids in vesicle membranes,
    Biochemistry 10 (7) (1971) 1111–1120.
    [41] A. A. Gurtovenko, I. Vattulainen, Molecular Mechanism for Lipid Flip-Flop, J. Phys. Chem. B 111 (2007) 13554–13559.
    [42] S. Lev, Non-vesicular lipid transport by lipid-transfer proteins and beyond, Nat. Rev. Mol. Cell Biol. 11 (10) (2010) 739–750.
    [43] G. Cevc, D. Marsh, Phospholipid Bilayers: Physical Principles and Methods, John Wiley and Sons, New York, 1987.
    [44] D. P. Tieleman, S. J. Marrink, Lipid Out of Equilibrium: Energetics of Desorption and Pore Mediated Flip-Flop, J. Am. Chem. Soc. 128 (2006) 12462–12467.
    [45] S. J. Marrink, E. Lindahl, O. Edholm, A. E. Mark, Simulation of the Spontaneous Aggregation of Phospholipids into Bilayers, J. Am. Chem. Soc. 123 (2001) 8638–8639.
    [46] N. Sapay, W. F. Drew Bennett, D. P. Tieleman, Thermodynamics of flip-flop and desorption for a systematic series of phosphatidylcholine lipids, Soft Matter 5 (2009) 3295–3302.
    [47] N.-N. Hai, Z. Xin, M. Li, Influence of the Structure of Lipids on Thermal Stability of Lipid Membranes, Commun, Theor. Phys. 64 (2015) 249–258.
    [48] S. J. Marrink, A. H. de Vries, D. P. Tieleman, Lipids on the move: Simulations of membrane pores, domains, stalks and curves, Biochim. Biophys. Acta 1788 (2009) 149–168.
    [49] M. L. Klein, W. Shinoda, Large-Scale Molecular Dynamics Simulations of Self-Assembling Systems, Science 321 (2008) 798–800.
    [50] B. Smit, P. A. J. Hilbers, K. Esselink, L. A. M. Rupert, N. M. van Os, A. G. Schlijper, Computer simulations of a water/oil interface in the presence of micelles, Nature 348 (1990) 624–625.
    [51] B. Smit, A. G. Schlijper, L. A. M. Rupert, N. M. van Os, Effects of chain length of surfactants on the interfacial tension: molecular dynamics simulations and experiments, J. Phys. Chem. 94 (1990) 6933–6935.
    [52] S. J. Marrink, A. H. de Vries, A. E. Mark, Coarse Grained Model for Semiquantitative Lipid Simulations, J. Phys. Chem. B 108 (2004) 750–760.
    [53] S. J. Marrink, H. J. Risselada, S. Yefimov, D. P. Tieleman, A. H. de Vries, The MARTINI Force Field: Coarse Grained Model for Biomolecular Simulations, J. Phys. Chem. B 111 (2007) 7812–7824.
    [54] J. D. Perlmutter, J. N. Sachs, Inhibiting Lateral Domain Formation in Lipid Bilayers: Simulations of Alternative Steroid Headgroup Chemistries, J. Am. Chem. Soc. 131 (2009) 16362–16363.
    [55] A. Gautieri, A. Russo, S. Vesentini, A. Redaelli, M. J. Buehler, Coarse-Grained Model of Collagen Molecules Using an Extended MARTINI Force Field, J. Chem. Theory Comput. 6 (2010) 1210–1218.
    [56] C. A. Lo ́pez, A. J. Rzepiela, A. H. de Vries, L. Dijkhuizen, P. H. Hu nenberger, S. J. Marrink, Martini
    Coarse-Grained Force Field: Extension to Carbohydrates, J. Chem. Theory Comput. 5 (2009) 3195–3210.
    [57] J. Wohlert, L. A. Berglund, A Coarse-Grained Model for Molecular Dynamics Simulations of Native Cellulose, J. Chem. Theory Comput. 7 (2011) 753–760.
    [58] H. Lee, A. H. de Vries, S. J. Marrink, R. W. Pastor, A Coarse-Grained Model for Polyethylene Oxide and Polyethylene Glycol: Conformation and Hydrodynamics, J. Phys. Chem. B 113 (2009) 13189–13189.
    [59] G. Rossi, L. Monticelli, S. R. Puisto, I. Vattulainen, T. Ala-Nissila, Coarse graining polymers with the MARTINI force-field: polystyrene as a benchmark case, Soft Matter 7 (2011) 698–708.
    [60] M. Hatakeyama, R. Faller, Coarse-grained simulations of ABA amphiphilic triblock copolymer solutions in thin films, Phys. Chem. Chem. Phys 9 (2007) 4662–4672.
    [61] A. Milani, M. Casalegno, C. Castiglioni, G. Raos, Macromol, Coarse-Grained Simulations of Model Polymer Nanofibres, Theory Simul. 20 (2011) 305–319.
    [62] J. Wong-Ekkabut, S. Baoukina, W. Triampo, I. M. Tang, D. P. Tieleman, L. Monticelli, Computer simulation study of fullerene translocation through lipid membranes, Nat. Nanotechnol. 3 (2008) 363–368.
    [63] E. J. Wallace, M. S. P. Sansom, Carbon Nanotube/Detergent Interactions via Coarse-Grained Molecular
    Dynamics, Nano. Lett. 7 (7) (2007) 1923–1928.
    [64] L. Monticelli, On Atomistic and Coarse-Grained Models for C60 Fullerene, J. Chem. Theor. Comput. 8 (4) (2012) 1370–1378.
    [65] H. Lee, R. G. Larson, Coarse-Grained Molecular Dynamics Studies of the Concentration and Size Dependence of Fifth- and Seventh-Generation PAMAM Dendrimers on Pore Formation in DMPC Bilayer, J. Phys. Chem. B 112 (26) (2008) 7778–7784.
    [66] H. Lee, R. G. Larson, Molecular Dynamics Simulations of PAMAM Dendrimer-Induced Pore Formation in DPPC Bilayers with a Coarse-Grained Model, J. Phys. Chem. B 110 (37) (2006) 18204–18211.
    [67] W. Shinoda, R. Devane, M. L. Klein, Multi-property fitting and parameterization of a coarse grained
    model for aqueous surfactants, Mol. Simul. 33 (2007) 27–36.
    [68] J. F. Nagle, S. Tristram-Nagle, Structure of lipid bilayers, Biochim, Biophys. Acta 1469 (2000) 159–195.
    [69] J. Hénin, W. Shinoda, M. L. Klein, United-Atom Acyl Chains for CHARMM Phospholipids, J. Phys. Chem. B 112 (2008) 7008–7015.
    [70] W. Shinoda, R. DeVane, M. L. Klein, Coarse-grained force field for ionic surfactant, Soft Matter 7 (2011) 6178–6186.
    [71] S. W. Hui, T. P. Stewart, L. T. Boni, P. L. Yeagle, Membrane fusion through point defects in bilayers, Science 212 (1981) 921–923.
    [72] D. P. Siegel, Energetics of intermediates in membrane fusion: comparison of stalk and inverted micellar intermediate mechanism, Biophys 65 (1993) 2124–2140.
    [73] D. P. Siegel, Inverted micellar intermediates and the transitions between lamellar, cubic, and inverted
    hexagonal lipid phases. II. Implications for membrane-membrane interactions and membrane fusion, Biophys 49 (1986) 1171–1183.
    [74] S. Jo, J. B. Lim, J. B. Klauda, W. Im, CHARMM-GUI membrane builder for mixed bilayers and its application to yeast membranes, Biophys. J. 97 (2009) 50–58.
    [75] L. Martinez, R. Andrade, E. G. Birgin, J. M. Martinez, Software News and Update Packmol: A Package for Building Initial Configurations for Molecular Dynamics Simulations, J. Comput. Chem. 30 (2009) 2157–2164.
    [76] S.-S. Qin, Z.-W. Yu, Structural Characterization on the Gel to Liquid-Crystal Phase Transition of Fully Hydrated DSPC and DSPE Bilayers, J. Phys. Chem. B 113 (2009) 8114–8123.
    [77] P. S. Coppock, J. T. Kindt, Determination of Phase Transition Temperatures for Atomistic Models of Lipids from Temperature-Dependent Stripe Domain Growth Kinetics, J. Phys. Chem. B 114 (2010) 11468–11473.
    [78] B. Hess, C. Kutzner, D. Van Der Spoel, E. Lindahl, GROMACS 4: algorithms for highly efficient load-balanced, and scalable molecular simulation, J. Chem. Theory Comput. 4 (2008) 435–447.
    [79] J. B. Klauda, R. M. Venable, J. A. Freites, J. W. O’connor, D. J. Tobias, C. Mondragon-Ramirez, I. Vorobyov, A. D. MacKerell, R. W. Pastor, Update of the CHARMM all-atom additive force field for
    lipids: Validation on Six lipid types, Biophys. J. 72 (2010) 7830–7843.
    [80] W. L. Jorgensen, J. Chandrasekhar, J. D. Madura, R. W. Impey, Comparison of simple potential functions for simulating liquid water, J. Chem. Phys. 79 (1983) 926–935.
    [81] A. D. MacKerell, D. Bashford, M. Bellott, R. L. Dunbrack, J. D. Evanseck, M. J. Field, S. Fischer, J.
    Gao, H. Guo, S. Ha, D. Joseph-McCarthy, L. Kuchnir, K. Kuczera, F. T. Lau, C. Mattos, S. Michnick,
    T. Ngo, D. T. Nguyen, B. Prodhom, W. E. Reiher, B. Roux, M. Schlenkrich, J. C. Smith, R. Stote, J.
    Straub, M. Watanabe, J. Wiórkiewicz-Kuczera, D. Yin, M. Karplus, All − atom empirical potential for molecular modeling and dynamics studies of proteins, J. Phys. Chem. B 102 (1998) 3586–3616.
    [82] S. Nose, A molecular dynamics method for simulations in the canonical ensemble, Mol. Phys. 52 (1984) 255–268.
    [83] S. Nose, A unified formulation of the constant temperature molecular dynamics methods, J. Chem. Phys.
    81 (1984) 511–519.
    [84] W. G. Hoover, Canonical dynamics: equilibrium phase-space distributions, Phys. Rev. 31 (1985) 1695–1697.
    [85] M. Parrinello, A. Rahman, Polymorphic transitions in single crystals: A new molecular dynamics, J. Appl. Phys. 52 (1981) 7182–7190.
    [86] T. Darden, D. York, L. Pedersen, Particle mesh Ewald An Nlog(N) method for Ewald sums in large systems, J. Chem. Phys. 98 (1993) 10089–10092.
    [87] U. Essmann, L. Perera, M. L. Berkowitz, T. Darden, H. Lee, L. G. Pedersen, A smooth particle mesh Ewald method, J. Chem. Phys. 103 (1995) 8577–8596.
    [88] B. Hess, H. Bekker, H. J. C. Berendsen, J. G. E. M. Fraaije, LINCS: A linear constraint solver for molecular simulations, J. Comput. Chem. 18 (1997) 1469–1472.
    [89] S. Plimpton, Fast Parallel Algorithms for Short-Range Molecular Dynamics, J. Comput. Phys. 117 (1) (1995) 1–19.
    [90] G. J. Martyna, M. L. Klein, M. Tuckerman, Nose–Hoover chains: The canonical ensemble via continuous dynamics, J. Chem. Phys. 97 (1992) 2635–2643.
    [91] G. J. Martyna, D. J. Tobias, M. L. Klein, Constant pressure molecular dynamics algorithms, J. Chem. Phys. 101 (1994) 4177.
    [92] M. Tuckermana, B. J. Berne, G. J. Martyna, Reversible multiple time scale molecular dynamics, J. Chem. Phys. 97 (3) (1992) 1990–2001.
    [93] S. J. Marrink, A. E. Mark, Molecular Dynamics Simulation of the Formation, Structure, and Dynamics of Small Phospholipid Vesicles, J. Am. Chem. Soc. 125 (2003) 15233–15242.
    [94] J. Seelig, Deuterium magnetic resonance: Theory and application to lipid membranes, Q. Rev. Biophys 10 (1997) 353–418.
    [95] H. Schindler, J. Seelig, Deuterium Order Parameters in Relation to Thermodynamic Properties of a Phospholipid Bilayer. A Statistical Mechanical Interpretation, Biochemistry 14 (1975) 2283–2287.
    [96] Y. Sugita, Y. Okamoto, Replica-exchange molecular dynamics method for protein folding, Chem. Phys. Lett. 314 (1999) 141–151.
    [97] D. J. Earla, M. W. Deema, Parallel Tempering: Theory, Applications, and New Perspectives, Phys. Chem. Chem. Phys. 7 (2005) 3910–3916.
    [98] K. Ogata, W. Uchida, S. Nakamura, Understanding Thermal Phases in Atomic Detail by All- Atom Molecular-Dynamics Simulation of a Phospholipid Bilayer, J. Phys. Chem. B 118 (2014) 14353–14365.
    [99] E. Guàrdia, J. Martí, L. García-Tarrés, D. Laria, A molecular dynamics simulation study of hydrogen bonding in aqueous ionic solutions, J. Mol. Liq. 117 (2005) 63–67.
    [100] A. Luzar, Resolving the hydrogen bond dynamics conundrum, J. Chem. Phys. 113 (2000) 10663.
    [101] R. L. Veech, Y. Kashiwaya, M. T. King, The Resting Membrane Potential of Cells Are Measures of Electrical Work, Not of Ionic Currents, Integr. Physiol. Behav. Sci. 30 (4) (1995) 283–307.
    [102] W. Shinoda, M. Shimizu, S. Okazaki, Molecular Dynamics Study on Electrostatic Properties of a Lipid Bilayer: Polarization, Electrostatic Potential, and the Effects on Structure and Dynamics of Water near the Interface, J. Phys. Chem. B 102 (34) (1998) 6647–6654.
    [103] F. Zhou, K. Schulten, Molecular Dynamics Study of a Membrane − Water Interface, J. Phys. Chem. 99 (7) (1995) 2194–2207.
    [104] S. P. Tiwari, N. Rai, E. J. Maginn, Dynamics of actinyl ions in water: a molecular dynamics simulation study, Phys. Chem. Chem. Phys. 16 (2014) 8060–8069.
    [105] R. W. Impey, P. A. Madden, I. R. McDonald, Hydration and Mobility of Ions in Solution, J. Phys. Chem. 87 (1983) 5071–5083.
    [106] E. Guardia, J. A. Padro, Molecular Dynamics Simulation of Single Ions in Aqueous Solutions: Effects of the Flexibility of the Water Molecules, J. Phys. Chem. 94 (1990) 6049–6055.
    [107] W. Shinoda, M. Mikami, T. Baba, M. Hato, Dynamics of a highly branched lipid bilayer: a molecular dynamics study, Chem. Phys. Lett. 390 (2004) 35–40.
    [108] K. Shinoda, W. Shinoda, M. Mikami, Molecular dynamics simulation of archaeal lipid bilayer with sodium chloride, Phys. Chem. Chem. Phys. 9 (2007) 643–650.
    [109] J. R. Robalo, J. P. Ramalho, D. Huster, L. M. S. Loura, Influence of the sterol aliphatic side chain on membrane properties: a molecular dynamics study, Phys. Chem. Chem. Phys. 17 (2015) 22736–22748.
    [110] A. J. P. A. J. L. M. S. Loura, Diphenylhexatriene membrane probes DPH and TMA-DPH: A comparative molecular dynamics simulation study, Bimchim. Biophys. Acta 1858 (2016) 2647–2661.
    [111] S. E. Feller, R. W. Pastor, Constant surface tension simulations of lipid bilayers: The sensitivity of
    surface areas and compressibilities, J. Chem. Phys. 111 (3) (1999) 1281–1287.
    [112] W. Shinoda, K. Shinoda, T. Baba, M. Mikami, Molecular dynamics study of bipolar tetraether lipid membranes, Biophys. J. 89 (5) (2005) 3195–3202.
    [113] G. Khelashvili, G. Pabst, D. Harries, Cholesterol Orientation and Tilt Modulus in DMPC Bilayers, J. Phys. Chem. B 114 (2010) 7524–7534.
    [114] G. Khelashvili, D. Harries, How cholesterol tilt modulates the mechanical properties of saturated and
    unsaturated lipid membranes, J. Phys. Chem. B 117 (8) (2013) 2411–2421.
    [115] G. Khelashvili, B. Kollmitzer, P. Heftberger, G. Pabst, D. Harries, Calculating the Bending Modulus for
    Multicomponent Lipid Membranes in Different Thermodynamic Phases, J. Chem. Theory Comput. 9 (9) (2013) 3866–3871.
    [116] R. W. Zwanzig, High-Temperature Equation of State by a Perturbation Method. I Nonpolar Gases, J. Chem. Phys. 22 (1954) 1420–1426.
    [117] K. Ogata, S. Nakamura, Improvement of Parameters of the AMBER Potential Force Field for Phospholipids for Description of Thermal Phase Transitions, J. Phys. Chem. B 119 (2015) 9726–9739.
    [118] J. P. M. Jambeck, A. P. Lyubartsev, Derivation and Systematic Validation of a Refined All-Atom Force Field for Phosphatidylcholine Lipids, J. Phys. Chem. B 116 (2012) 3164–3179.
    [119] M. A. Singer, L. Finegold, Permeability and morphology of low temperature phases in bilayer of single and mixtures of phosphatidylcholines, Biochim. Biophys. Acta 816 (1985) 303–312.
    [120] K. Mortensen, W. Pfeiffer, E. Sackmann, W. Knoll, Structural properties of a phosphatidylcholine-
    cholesterol system as studied by small-angle neutron scattering: ripple structure and phase diagram, Biochim. Biophys. Acta 945 (1988) 221–245.
    [121] Yu-Shun Lin, Monolayer Behavior of Mixed Anionic/Cationic Surfactants at Air/Liquid Interfaces, Na-
    tional Cheng Kung University, Department of Chemical Engineering, Master Thesis, 2003.
    [122] R. Zhang, R. M. Suter, C. R. Worthington, W. Sun, J. F. Nagle, Measurement of chain tilt order angle in fully hydrated bilyers of gel phase lecithins, Biophys. J. 64 (1994) 1097–1109.
    [123] W. Shinoda, M. Mikami, T. Baba, M. Hato, Molecular Dynamics Study on the Effect of Chain Branching on the Physical Properties of Lipid Bilayers: Structural Stability, J. Phys. Chem. B 107 (2003) 14030–14035.
    [124] K. Gawrisch, D. Ruston, J. Zimmerberg, V. A. Parsegian, R. P. Rand, N. Fuller, Membrane dipole potentials, hydration forces, and the ordering of water at membrane surfaces, Biophys. J. 61 (1992) 1213–1223.
    [125] M. A. Bahri, M. Hoebeke, A. Grammenos, L. Delanaye, N. Vandewalle, A. Seret, Investigation of SDS, DTAB and CTAB micelle microviscosities by electron spin resonance, Colloids Surf. A: Physicochem. Eng. Aspects 290 (2006) 206–212.
    [126] C. C. Ruiz, Thermodynamics of micellization of tetradecyltrimethylammonium bromide in ethylene glycol-water binary mixtures, Colloid Polym. Sci. 277 (1999) 701–707.
    [127] M. K. Baloch, G. Hameed, A. Bano, Effect of Electrolyte Concentration and Temperature on CMC of Surfactants, J. Chem. Soc. 24 (2) (2002) 77–86.
    [128] N. Nugara, W. Prpaitrakul, A. D. King, Jr, The Solubilization of Propane by Mixed Micelles Composed
    of Sodium Alkyl Sulfates, J. Colloid Interface Sci. 120 (1) (1987) 118–124.
    [129] W. Helfrich, Elastic properties of lipid bilayers. Theory and possible experiments, Z. Naturforsch. C Bio.
    Sci. 28 (1973) 693–703.

    下載圖示 校內:2021-02-01公開
    校外:2021-02-01公開
    QR CODE