| 研究生: |
吳培綸 Wu, Pei Lun |
|---|---|
| 論文名稱: |
利用GPU平行計算在非結構性網格下的真實流向靜態直接模擬法 True Direction QDS Simulations on Unstructured Grids Using GPU |
| 指導教授: |
李汶樺
Matthew Smith |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 130 |
| 中文關鍵詞: | 計算流體力學 、有限體積法 、靜態直接模擬法 、非結構性網格 、平行計算 、圖形處理器 、CUDA |
| 外文關鍵詞: | Computational Fluid Dynamics, Finite Volume Method, Quiet Direction Simulation, Unstructured grid, Parallel Computing, Graphics Processing Unit(GPU), CUDA |
| 相關次數: | 點閱:114 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著工程問題漸趨複雜,傳統的計算流體力學不再只是著重在結構性的卡氏座標網格,本研究提出一新方法稱為三角網格下的靜態直接模擬法(QDS Triangular Meshes method, QDS-tri),其改良自以往的靜態直接模擬法(Quiet Direct Simulation, QDS)。QDS方法利用數值積分的方式取代了平衡通量法(Equilibrium Flux Method, EFM)經由積分速度機率分布函數之通量計算,並且由於其真實流向的特性,通量的計算不再受限於像以往傳統的有限體積法(Finite Volume Method, FVM)只能存取於網格間的介面通量。儘管過往有發展過於三角網格下之QDS方法,但是卻是利用方向解耦(direction decoupling)之通量計算。因此在此研究中我們延伸發展了三角網格下的QDS方法,同時保留著其真實流向的特性。為了確認QDS-tri方法之可行性,該方法運用偽一維震波管問題、二維爆炸波問題以及高超速流場問題來驗證,同時也和其他的方法之結果比較。
此外,我們運用圖形處理器(Graphics Processing Unit, GPU)的平行運算架構透過CUDA技術來加快計算速度。從最佳結果來看,利用輝達(Nvidia)的GTX Titan X計算下約比單核心的Intel Xeon E5 2650搭配著SSE向量化及最佳化的計算快上了9.6倍。
As the engineering problems become more and more complicated, the conventional Computational Fluid Dynamics are no longer focused on the structured Cartesian grids. This study present an adaptation of the Quiet Direct Simulation (QDS), named the “Quiet Direct Simulation on Triangular meshes (QDS-tri) method. The QDS method is an approximation of the Equilibrium Flux Method (EFM) whereas replaces analytical moments of molecular velocity distribution functions with the numerical integrals. Also with the true directional nature of QDS, the fluxes can be delivered among the diagonal cells which they do not share the interface while the conventional finite volume method compute the fluxes across the interface shared by adjacent cells. Although previous research have developed on unstructured (triangular) grids, it was performed by directionally decoupled variation of QDS with pseudo one-dimensional fluxes. This study extend to develop the QDS method on 2D triangular meshes while retaining direction coupling. In order to demonstrate the QDS-tri method, there are several benchmark studies applied by QDS-tri method to verify the physical phenomenon. These studies include pseudo one-dimensional shock tube and two dimensional blast wave and hypersonic flow problems, which are compared with other solvers.
Furthermore, we apply Graphics Processing Unit (GPU) parallel computing architecture to improve the computation speed through the application of Compute Unified Device Architecture (CUDA). The maximum speed up is approximately 9.6x compared with Nvidia GTX Titan X and Intel Xeon E5 2650 CPU core using SSE vectorization / optimization.
References
[1] R. H. Pletcher, J. C. Tannehill, and D. Anderson, Computational fluid mechanics and heat transfer. CRC Press, 2012.
[2] T. Cebeci, J. P. Shao, F. Kafyeke, and E. Laurendeau, Computational fluid dynamics for engineers. Springer Berlin Heidelberg, 2005.
[3] H. K. Versteeg and W. Malalasekera, An introduction to computational fluid dynamics: the finite volume method. Pearson Education, 2007.
[4] J. Gressier and J. M. Moschetta, "Robustness versus accuracy in shock‐wave computations," International Journal for Numerical Methods in Fluids, vol. 33, no. 3, pp. 313-332, 2000.
[5] B. Albright, D. S. Lemons, M. E. Jones, and D. Winske, "Quiet direct simulation of Eulerian fluids," Physical Review E, vol. 65, no. 5, p. 055302, 2002.
[6] B. Albright, W. Daughton, D. S. Lemons, D. Winske, and M. E. Jones, "Quiet direct simulation of plasmas," Physics of Plasmas, vol. 9, no. 5, pp. 1898-1904, 2002.
[7] M. R. Smith, H. M. Cave, J.-S. Wu, M. C. Jermy, and Y.-S. Chen, "An improved Quiet Direct Simulation method for Eulerian fluids using a second-order scheme," Journal of Computational Physics, vol. 228, no. 6, pp. 2213-2224, 2009.
[8] C. Lim, M. Smith, H. Cave, M. Jermy, J.-S. Wu, and S. Krumdieck, "The direction decoupled Quiet Direct Simulation method for rapid simulation of axisymmetric inviscid unsteady flow in pulsed pressure chemical vapour deposition," Computers & Fluids, vol. 86, pp. 14-27, 2013.
[9] Y.-J. Lin, M. R. Smith, F.-A. Kuo, H. M. Cave, J.-C. Huang, and J.-S. Wu, "A true-direction reconstruction of the quiet direct simulation method for inviscid gas flows," Computer Physics Communications, vol. 184, no. 11, pp. 2378-2390, 2013.
[10] M. R. Smith, F.-A. Kuo, C.-W. Hsieh, J.-P. Yu, J.-S. Wu, and A. Ferguson, "Rapid optimization of blast wave mitigation strategies using Quiet Direct Simulation and Genetic Algorithm," Computer Physics Communications, vol. 181, no. 6, pp. 1025-1036, 2010.
[11] J. Blazek, Computational fluid dynamics: principles and applications. Butterworth-Heinemann, 2015.
[12] J. Cook, Grant, "High accuracy capture of curved shock fronts using the method of space-time conservation element and solution element," in 37th Aerospace Sciences Meeting and Exhibit, 1998, p. 1008.
[13] M. Smith, M. N. Macrossan, and M. Abdel-Jawad, "Effects of direction decoupling in flux calculation in finite volume solvers," Journal of Computational Physics, vol. 227, no. 8, pp. 4142-4161, 2008.
[14] M. Macrossan, M. Smith, M. Metchnik, and P. Pinto, "True Direction Equilibrium Flux Method applications on rectangular 2D meshes," in 25th International Symposium on Rarefied Gas Dynamics, 2006, pp. 239-244: Siberian Branch of the Russian Academy of Sciences.
[15] G. Bird, "Molecular gas dynamics and the direct simulation monte carlo of gas flows," Clarendon, Oxford, vol. 508, p. 128, 1994.
[16] J. Lengrand, M. Raffin, J. Allegre, and R. Hughes, "Monte Carlo simulation method applied to jet wall interactions under continuum flow conditions," Rarefied gas dynamics, vol. 74, pp. 994-1006, 1981.
[17] E. F. Toro, Riemann solvers and numerical methods for fluid dynamics: a practical introduction. Springer Science & Business Media, 2013.
[18] D. Pullin, "Direct simulation methods for compressible inviscid ideal-gas flow," Journal of Computational Physics, vol. 34, no. 2, pp. 231-244, 1980.
[19] M. Macrossan, "The equilibrium flux method for the calculation of flows with non-equilibrium chemical reactions," Journal of Computational Physics, vol. 80, no. 1, pp. 204-231, 1989.
[20] M. N. Macrossan, M. V. Metchnik, and P. A. Pinto, "Hypersonic flow over a wedge with a particle flux method," in AIP Conference Proceedings, 2005, vol. 762, no. 1, pp. 650-655: AIP.
[21] H. Cave et al., "Multi‐Species Fluxes for the Parallel Quiet Direct Simulation (QDS) Method," in AIP Conference Proceedings, 2011, vol. 1333, no. 1, pp. 878-883: AIP.
[22] D. Zwillinger, CRC standard mathematical tables and formulae. CRC press, 2002.
[23] M. E. Conway, "A multiprocessor system design," in Proceedings of the November 12-14, 1963, fall joint computer conference, 1963, pp. 139-146: ACM.
[24] M. J. Flynn, "Very high-speed computing systems," Proceedings of the IEEE, vol. 54, no. 12, pp. 1901-1909, 1966.
[25] M. J. Flynn, "Some computer organizations and their effectiveness," IEEE transactions on computers, vol. 100, no. 9, pp. 948-960, 1972.
[26] D. Guide, "CUDA C PROGRAMMING GUIDE," NVIDIA, July, 2013.
[27] C. Zeller, "Cuda c/c++ basics," NVIDIA Coporation, 2011.
[28] B. Delaunay, "Sur la sphere vide," Izv. Akad. Nauk SSSR, Otdelenie Matematicheskii i Estestvennyka Nauk, vol. 7, no. 793-800, pp. 1-2, 1934.
[29] L. N. Trefethen and D. Bau III, Numerical linear algebra. Siam, 1997.
[30] B. Braden, "The surveyor’s area formula," The College Mathematics Journal, vol. 17, no. 4, pp. 326-337, 1986.
[31] T. Pöschel and T. Schwager, Computational granular dynamics: models and algorithms. Springer Science & Business Media, 2005.
[32] G. A. Sod, "A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws," Journal of computational physics, vol. 27, no. 1, pp. 1-31, 1978.
[33] R. E. Duff and A. N. Blackwell, "Explosive driven shock tubes," Review of Scientific Instruments, vol. 37, no. 5, pp. 579-586, 1966.
[34] I. Danaila, P. Joly, S. M. Kaber, and M. Postel, An introduction to scientific computing: Twelve computational projects solved with MATLAB. Springer Science & Business Media, 2007.
[35] L. I. Sedov, Similarity and dimensional methods in mechanics. CRC press, 1993.