簡易檢索 / 詳目顯示

研究生: 洪子鈞
Hung, Tzu-Chun
論文名稱: 二維不可壓縮磁流場之數值模擬
Numerical Simulation of Two-Dimensional Incompressible MHD Flow
指導教授: 林三益
Lin, San-Yih
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2003
畢業學年度: 91
語文別: 中文
論文頁數: 69
中文關鍵詞: 磁流力學人工壓縮因子有限體積法散度守恆性
外文關鍵詞: Divergence Free Condition, Magnetohydrodynamics(MHD), Artificial Compressibility, Finite-Volume method
相關次數: 點閱:61下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文研究的目的在於利用數值方法模擬潔淨室內潔淨氣流流經工作機台時,造成流場與磁場的改變進行研究與分析。數值方法是以三階上風的有限體積法與二階中央差分法來求解二維磁流力學方程式(Magnetohydynamic Equations, MHD),並在連續方程式中加入人工壓縮因子法。其中在對流項(convection)中採用高階的上風有限體積法(high-order upwind finite volume techniques ),在黏滯項(viscous)中則採用二階有限體積法。在磁場方面,由於磁場的散度守恆性,採用二階的中央差分法來計算磁場的分佈。
    在物理模型方面,當潔淨氣流流經工作機台時,會形成迴流區域,本文並以簡單的模型作測試。同時發現磁場參數的增加將抑止渦流的產生,降低作用在鈍形體(bluff body)上流體的各種力。

    關鍵字:有限體積法、人工壓縮因子、磁流力學、散度守恆性

    A numerical method is developed to simulate the change of the flow field and magnetic field when clear air passes through a working platform. The numerical method is used a third-order upwind finite-volume scheme and second-order central finite difference scheme to solve the two-dimensional Magnetohydynamic Equations. The artificial compressibility method is applied in the continuity equation. It uses a high order finite-volume scheme for the convective terms and a second-order finite-volume scheme for the viscous terms. In the magnetic field, because of divergence free condition of magnetic field, the second-order central finite difference scheme is applied.
    When clear air passes through a working platform will generate non-uniform circulation zones. We found the magnetic parameter increasing can suppress vortex and to reduce the fluid force acting on a bluff body.

    Keyword:Finite-Volume method, Artificial Compressibility,
    Magnetohydrodynamics(MHD),Divergence Free Condition

    目 錄 中文摘要……………………………………………………………………Ⅰ 英文摘要……………………………………………………………………Ⅱ 誌謝…………………………………………………………………………Ⅲ 目錄…………………………………………………………………………Ⅳ 圖表目錄……………………………………………………………………Ⅵ 符號說明……………………………………………………………………Ⅹ 第一章 緒論……………………………………………………………………1 第二章 數值方法………………………………………………………………5 2.1基礎理論…………………………………………………………5 2.2統御方程式………………………………………………………7 2.3空間差分…………………………………………………………9 2.4時間積分…………………………………………………………13 2.4.1穩態公式…………………………………………………13 2.4.2非穩態公式………………………………………………15 2.5邊界條件…………………………………………………………16 2.5.1固體邊界條件……………………………………………16 2.5.2流入及流出的邊界條件…………………………………16 2.5.3磁場的邊界條件…………………………………………16 2.6收斂標準…………………………………………………………16 第三章 程式驗證………………………………………………………………18 3.1基本測試…………………………………………………………18 第四章 結果與討論……………………………………………………………22 4.1物理流場的描述…………………………………………………22 4.2流體受磁感應強度之影響………………………………………23 4.3受磁場參數下方柱後渦流的變化情形…………………………24 4.4受磁場參數下圓柱後渦流的變化情形……………………26 第五章 結論……………………………………………………………………29 參考文獻…………………………………………………………………………30 圖…………………………………………………………………………………33 表…………………………………………………………………………………67 自述………………………………………………………………………………68 著作權說明………………………………………………………………………69

    1.S. J. Yang and W. S. Fu, “A Numerical Investigation of effect of a moving operator on airflow patterns in a cleanroom,” Building and Environment, Vol.37, pp.705-712, 2002.
    2.Hirsh, R. S., “Higher Order Accurate Difference Solutions of Fluid Mechanics Problems by a Compact Differencing Technique.” Journal of Computational Physics, Vol. 19, pp. 90-109, 1975.
    3.John C. Tannehill, & Dale A. Anderson, & Richard H. Pletcher, Computational Fluid Mechanics and Heat Transfer, Taylor & Francis, 2nd edition, 1997.
    4.Alexandre Joel Chorin, “A Numerical Method for Solving Incompressible Viscous Flow Problems.” Journal of Computational Physics, Vol. 2, pp.12-26, 1967.
    5.D. Pan, and S. Chakravarthy, “Unified Formulation for Incompressible Flows,” AIAA Paper 89-0122, 1989.
    6.R. Moreau, Magnetohydrodynamics, Kluwer Academic, Dordrecht, 1990.
    7.Orszag and C. M. Tang, “Small-scale structure of two-dimensional magnetohydrodynamic turbulence,” J. Fluid. Mech., Vol.90, pp.129-143, 1979.
    8.Dahlburg and J. M. Picone, “Evolution of the Orszag-Tang vortex system in a compressible medium.I.Initial average subsonic flow,” Phys. Of Fluid B.Vol.1, No.11, pp.2153-2171, 1989.

    9.Dahlburg and J. M. Picone, “Evolution of the Orszag-Tang vortex system in a compressible medium.II.supersonic flow,” Phys. Of Fluid B.Vol.3, No.1, pp.29-44, 1991.
    10.T. Weier, G. Gerbeth, G. Mutschke, E. Platacis, O.Lielausis, “Experiments on Cylinder Wake Stabilization in an Electrolyte Solution by Means of Electromagnetic Forces Localized on the Cylinder Surface,” Experimental Thermal and Fluid Science, Vol. 16, pp. 84-91, 1998.
    11.G. Mutschke, V. Shatrov, and G. Gerbeth, “Cylinder Wake Control by Magnetic Fields in Liquid Metal Flows,’’ Experimental Thermal and Fluid Science, Vol. 16, pp. 92-99, 1998.
    12.S. Y. Lin and T. M. Wu, “An Adaptive Multigrid Finite-Volume Scheme for Incompressible Navier-Stokes Equations,” International Journal of Numerical Methods in Fluids, Vol. 17, pp. 687-710, Oct. 1993.
    13.吳村木, “以有限體積法探討流經圓柱渦漩曳放的壓抑現象,” 成功 大學航空太空研究所博士論文, 1993.
    14.Zachary, A. Malagoli, and P. Colella, “A high-order Godunov method for multidimensional ideal magneto-hydrodynamics,” SIAM J. Sci. Comput. , Vol.15, pp.263-284, 1994.
    15.G. S.Jiang and C. C.Wu, “A high-order WENO finite difference scheme for the equation of ideal magneto-hydrodynamics,” Journal of Computational Physics, Vol. 150, pp.561-594, 1999.
    16.Z Tang and K. Xu, “A high-order Gas-Kinetic method for multidimensional ideal magnetohydrodynamics,” Journal of Computational Physics, Vol.165, pp.69-88, 2000.

    17.S. Y. Lin and Z. X. Yu, “Vortex Structure and Strength of Secondary Flows in Model Aortic Arches,” International Journal for Numerical Methods in Fluids, Vol. 40, pp. 379-389, 2002.
    18.J. Lahjomri, P. Caperan, A. Alemany, and G. Gerbeth, “The Cylinder Wake in a Magnetic Field Aligned with the Velocity,” J. Fluid Mech., Vol.253, pp.421-448, 1993.
    19.J. Josserand, Ph. Marty, and A. Alemany, “Pressure and Drag Measurements on a Cylinder in a Liquid Metal Flow with an Aligned Magnetic Field,” Fluid Dynamics Research, Vol. 11,pp. 107-117, 1993.
    20.K. E. Barrett, “Variational principle for two-dimensional high Hartmann number flow.” International Journal of Engineering Science, Vol. 39, pp.1577-1596, 2001.

    下載圖示 校內:立即公開
    校外:2003-08-13公開
    QR CODE