簡易檢索 / 詳目顯示

研究生: 柯淙凱
Ko, Tsun-Kai
論文名稱: 氮化鋁鎵/氮化鎵金氧半異質結構場效電晶體之電特性與低頻雜訊之分析
Electrical Characteristics and Low Frequency Noise Investigations of AlGaN/GaN Metal-Oxide-Semiconductor Heterostructure Field Effect Transistors
指導教授: 張守進
Chang, Shoou-Jinn
蘇炎坤
Su, Yan-Kuin
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2004
畢業學年度: 92
語文別: 英文
論文頁數: 69
中文關鍵詞: 低頻雜訊氮化鎵金氧半
外文關鍵詞: Low Frequency Noise, MOS, GaN
相關次數: 點閱:56下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本論文中,我們利用光激化學氣相沉積系統以氘燈為激發光源,成長二氧化矽於氮化鋁鎵上做為氮化鋁鎵/氮化鎵金氧半異質結構場效電晶體的絕緣層。跟相同結構的氮化鋁鎵/氮化鎵金半異質結構場效電晶體比較,我們可以降低閘極漏電流達十萬倍以上。在汲極電壓20V和閘極電壓-8V的偏壓條件下(元件操作在截止狀態),漏電流在300度下大約6.48mA/mm,這與在常溫下的漏電流6.46mA/mm幾乎是一樣的,也就是說元件在截止狀態幾乎能完全被關閉。我們也發現常溫下金氧半異質結構場效電晶體的閘極擺幅電壓(GVS)為9V,而金半異質結構場效電晶體則為5.5V。除此之外,金氧半異質結構場效電晶體的閘極擺幅電壓在300度也仍然有8.5V。在高頻表現上,金氧半異質結構場效電晶體與金半異質結構場效電晶體在閘極長度為1微米的情況下的最高截止頻率分別為4.05GHz與3.36GHz;另外,金氧半異質結構場效電晶體與金半異質結構場效電晶體的最大共振頻率分別為6.85GHz與5.45GHz。這些結果都顯示我們所製作的金氧半異質結構場效電晶體在高溫,高功率以及高頻應用上是非常有淺力的。
      在元件低頻雜訊特性上,我們主要研究對於金氧半異質結構場效電晶體和金半異質結構場效電晶體而言,雜訊是在元件那個部份產生,並且去探討雜訊在元件操作在飽和區時的特性。我們發現對於我們所製作的元件而言,汲極和源極的接觸電極以及閘極漏電流所產生的雜訊可以被忽略。另外由雜訊與元件閘極電壓的關係得知,當閘極電壓小於0伏特時,元件的雜訊主要產生在通道內閘極所包含的區域;而當閘極電壓大於0伏特時,元件的雜訊主要產生在通道內閘極所沒有包含的區域。除此之外,當元件操作在線性區時,所量得的雜訊是一樣的。另一方面,當元件操作在飽和區時,所量得的雜訊是比線性區來的大,並且隨著汲極電壓增加,雜訊有隨之上升的趨勢。最後我們計算金氧半異質結構場效電晶體和金半異質結構場效電晶體的虎格常數分別為1.47×10-3 and 1.87×10-3。

      In this thesis, high quality SiO2 layer was successfully deposited onto AlGaN as the dielectric layer for our AlGaN/GaN MOS-HFETs by photo-chemical vapor deposition (Photo-CVD) using D2 lamp as the excitation source. Compared with conventional AlGaN/GaN MES-HFETs with similar structure, the gate leakage current can be reduced by more than five orders of magnitude even at elevated temperature. With Vds=20V and Vg=-8V (cut-off), the leakage current at room temperature was about 6.46 mA/mm, which is almost the same with that (6.48mA/mm) at 300℃. Such a result indicated that MOS-HFETs can almost be turned off when biased in cut-off region. It was also found that room temperature gate voltage swing (GVS) was 9V for MOS-HFETs and 5.5V for MES-HFETs. In addition, gate voltage swing only decreased slightly to 8.5V when the temperature increased to 300℃. In the high frequency performance, the fT for MOS-HFETs and MES-HFETs with gate length = 1μm was 4.05 GHz and 3.36 GHz, respectively. Moreover, the corresponding fmax for MOS-HFETs and MES-HFETs were 6.85 GHz and 5.45 GHz, respectively. Such results indicated that our MOS-HFETs devices are very potential for high temperature, high power, and high frequency applications.
      In the low frequency noise characteristics, we mainly studied the noise source location in the devices and then discussed the low frequency noise of MOS-HFETs and MES-HFETs biased in the saturation region. It was found that the contact noise and the noise from the gate leakage current could be negligibly small in our devices. The dependence of the noise on gate voltage indicated that the noise originated in the gated region of the channel when devices were biased at Vgs < 0V and the ungated region when devices were biased at Vgs > 0V. In addition, when devices were biased in the linear region, the measured noises were all the same. On the other hand, when devices were biased in the saturation region, the measured noises were larger than those in the linear region and increased with larger drain voltage. Finally, the values of Hooge’s coefficient were 1.47×10-3 and 1.87×10-3 for MOS-HFETs and MES-HFETs, respectively.

    Abstract (Chinese)------------------------------------------------------I Abstract (English)----------------------------------------------------III Acknowledgements--------------------------------------------------------V Contents---------------------------------------------------------------VI Figure Captions------------------------------------------------------VIII Table Captions---------------------------------------------------------XI Chapter 1. Introduction-------------------------------------------------1 1-1. Background and Motivation------------------------------------------1 1-2. Organization of This Thesis----------------------------------------2 Chapter 2. Fabrication System and Measurement Theory--------------------7 2-1. Photo-CVD System---------------------------------------------------7 2-2. Inductively Coupled Plasma Reactive Ion Etching (ICP-RIE) System------------------------------------------------------------------9 2-3. Hall Measurement--------------------------------------------------10 2-4. Circular Transmission Line Model (CTLM) Measurement---------------11 2-5. RF Measurement System---------------------------------------------13 Chapter 3. The Electrical Properties of AlGaN/GaN MOS-HFETs------------23 3-1. Introduction------------------------------------------------------23 3-2. The Fabrication of AlGaN/GaN MOS-HFETs----------------------------24 3-3. DC Characteristics of AlGaN/GaN MOS-HFETs-------------------------25 3-3-1. The Hall measurement results 3-3-2. The measurement of ohmic contact resistance 3-3-3. The gate leakage current characteristics of MOS-HFETs 3-3-4. The Ids-Vgs and gm characteristics of MOS-HFETs 3-4. DC Characteristics of AlGaN/GaN MOS-HFETs at Elevated Temperature-27 3-5. High Frequency Characteristics of AlGaN/GaN MOS-HFETs-------------28 3-6. Summary-----------------------------------------------------------29 Chapter 4. Low Frequency Noise of AlGaN/GaN MOS-HFETs and MES-HFETs----43 4-1. Introduction------------------------------------------------------43 4-2. Types of Low Frequency Noise--------------------------------------44 4-2-1. Thermal noise 4-2-2. Shot noise 4-2-3. Generation-Recombination (G-R) noise 4-2-4. Flicker (1/f) noise 4-3. Low Frequency Noise Sources in AlGaN/GaN MOS-HFETs and MES-HFETs--47 4-3-1. Drain and source contact contribution to noise 4-3-2. Contribution to noise from the gate leakage current 4-3-3. Contribution to noise from the channel regions 4-4. Low Frequency Noise of AlGaN/GaN MOS-HFETs and MES-HFETs Biased In the Saturation Region------------------------------------------------------52 4-5. Parameters Extraction---------------------------------------------54 Chapter 5. Conclusion and Future Work----------------------------------66 5-1. Conclusion--------------------------------------------------------66 5-2. Future work-------------------------------------------------------67

    Chapter 1 Reference:
    [1] M. A. Khan, M. S. Shur, J. N. Kuzunia, Q. Chen, J. Burm,and W. Schaff, Appl. Phys. Lett. Vol.66, 1083 (1995)
    [2] O. Aktas, Z. F. Fan, S. N. Mmohammand, A. E. Botchkarev, and H. Morkoc, Appl. Phys. Lett. Vol.69,3872 (1996)
    [3] S. Arulkumaran, T. Egawa, H. Ishikawa, and T. Jimbo, Applied Physics Letters, Vol. 81, No. 16, pp. 3073-3075, 2002.
    [4] A. Tarakji, G. Simin, N. Ilinskaya, X. Hu, A. Kumar, A. Koudymov, J. Yang, and M. Asif Khan, Applied Physics Letters, Vol. 78, No. 15, pp. 2169-2171, 2001
    [5] E. M. Chumbes, J. A. Smart, T. Prunty and J. R. Shealy, IEEE Tran. Electron. Dev. 48 (2001) 416
    [6] R. Therrien, G. Lucovsky and R. Davis, Appl. Surf. Sci. 166 (2000) 513
    [7] F. Ren, M. Hong, S. N. G. Chu, M. A. Marcus, M. J. Schurman, A. Baca, S. J. Pearton and C. R. Abernathy, Appl. Phys. Lett. 73 (1998) 3893
    [8] T. S. Lay, M. Hong, J. Kwo, J. P. Mannaerts, W. H. Hung and D. J. Huang, Solid State Electron. 45 (2001) 1679
    [9] J. W. Johnson, B. Luo, F. Ren, B. P. Gila, W. Krishnamoorthy, C. R. Abernathy, S. J. Pearton, J. I. Chyi, T. E. Nee, C. M. Lee and C. C. Chuo, Appl. Phys. Lett. 77 (2000) 3230
    [10] M. A. Khan, X. Hu, G. Sumin, A Lunev, J. Yang, R. Gaska and M. S. Shur, IEEE Electron. Dev. Lett. 21 (2000) 63
    [11] G. Sumin, X. Hu, N. Ilinskaya, J. Zhang, A. Tarakji, A. Kumar, J. Yang, M. Asif Khan, R. Gaska and M. S. Shur, IEEE Electron. Dev. Lett. 22 (2001) 53
    [12] G. Simin, A. Koudymov, H. Fatima, J. Zhang, J. Yang, M. A. Khan, X. Hu, A. Tarakji, R. Gaska and M. S. Shur, IEEE Electron. Dev. Lett. 23 (2002) 458
    [13] D. W. Chou, K. W. Lee, J. J. Huang, H. R. Wu, Y. H. Wang, M. P. Houng, S. J. Chang and Y. K. Su, Jpn. J. Appl. Phys. 41 (2002) L748
    [14] S. J. Chang, Y. K. Su, Y. Z. Chiou, J. R. Chiou, B. R. Huang, C. S. Chang and J. F. Chen, Journal of The Electrochem. Soc., 2003, Vol. 150, No. 2, pp. C77-C80
    [15] Y. Z. Chiou, C. S. Chang, S. J. Chang, Y. K. Su, J. R. Chiou, B. R. Huang and J. F. Chen, J. Vac. Sci. Technol. B, 2003, Vol. 21, No. 1, pp. 329-331
    Chapter 2 Reference:
    [1] Y. Tarui, J. Hidaka and K. Aota, “Low temperature growth of silicon dioxide film by photo-chemical vapor deposition”, Jpn. J. Appl. Phys, L.827, pp.23, 1984.
    [2] M. Okuyama, Y. Toyoda and Y. Hamakawa, “Photo-induced deuterium lamp”, Jpn. J. Appl. Phys., L97, pp.23, 1984.
    [3] O. Itoh, Y. Toyoshima, H. Onuki, N. Washida and T. Ibuk, “Vacuum ultraviolet absorption cross sections of SiH4, GeH4, Si2H6 and Si3H8”, J. Chem. Phys, 85, pp. 4876, 1986.
    [4] H. Okabe, Photochemistry of small molecules, (John Wiely, New York)
    [5] I.Adessida, A.Mahajan, E.Andideh, M.A.Kahn, D.T.Olson, and J.N. Kuznia, Appl.Phys.Lett. 63 2777 (1993).
    [6] S.J.Pearton, C.R.Abernathy, F.Ren, J.R.Lothian, J.Vac.Sci.Technol.A
    11 1772 (1993).
    [7] R.J.Shul, G.B.McClellan, S.A.Casalnuovo, D.J.Rieger, Appl.Phys. Lett. 69 1119 (1996).
    [8] 國立成功大學 碩士論文 Investigation and Fabrication of AlGaN/GaN MODFET with different Al mole fraction by Wei-Shou Chen.
    [9] Gregory S.Marlow, Mukunda B.Das, Solid State Electronics 25 91-94
    (1982).
    [10] R.K.Willardson and A.C.Beer, “Semiconductors and Semimetals
    Vol.7”, Academic Press, New York, 175-183 (1971).
    [11] V.Ya.Niskov and G.A.Kuberskii, Sov.Phys.Semicond. 4 1553(1971).
    [12] W.G. Bickley, “Bessel Functions”, University Press, Cambridge
    220-255 (1960).
    [13] S.S.Cohen and G.Sh.Gildenblat, “VLSI Electronics 13
    Metal-Semiconductor Contacts and Devices”, Academic Press,
    Orlando, FL, 115 (1986).
    [14] M.Ahmad and B.M.Arora, Silid-State Electron. 35 1441-1445 (1992).
    Chapter 3 Reference:
    [1] H. C. Casey, Jr., G. G. Fountain, R. G. Alley, B. P. Keller, and Steven P.
    DenBaars, Appl. Phys. Lett. 68, 1850 (1996)
    [2] S. Arulkumaran, T. Egawa, H. Ishikawa, T. Jimbo, and M. Umeno, Appl. Phys. Lett. 73, 809 (1998)
    [3] D. J. Fu, Y. H. Kwon, T. W. Kang, C. J. Park, K. H. Baek, H. Y. Cho, D. H. Shin, C. H. Lee, and K. S. Chung, Appl. Phys. Lett. 80, 446 (2002)
    [4] L. H. Peng, C. H. Liao, Y. C. Hsu, C. S. Jong, C. N. Huang, J. K. Ho, C. C. Chiu, and C. Y. Chen, Appl. Phys. Lett. 76, 511 (2000)
    [5] H. C. Casey, Jr., G. G. Fountain and R. G. Alley, B. P. Keller and Steven P. DenBaars, Appl. Phys. Lett. 68, 13 (1996)
    [6] S. J. Chang, Y. K. Su, Y. Z. Chiou, J. R. Chiou, B. R. Huang, C. S. Chang and J. F. Chen "Deposition of SiO2 layers on GaN by photo chemical vapor deposition", Journal of The Electrochem. Soc., 2003, Vol. 150, No. 2, pp. C77-C80
    [7] Y. Z. Chiou, S. J. Chang, Y. K. S, C. K. Wang, T. K. Lin and B. R. Huang, “Photo-CVD SiO2 layers on AlGaN and AlGaN/GaN MOSHFET”, Accepted by IEEE Transaction on Electron Device.
    [8] WILLIAM LIU, “FUNDAMENTALS OF III-V DEVICES”, JOHN WILEY & SONS, INC, NEW YORK/ CHICHESTER/ WEINHEIM/ BRISBANE/ SINGAPORE/ TORONTO, (1998).
    Chapter 4 Reference:
    [1] M. A. Khan, Q. Chen, M. S. Shur, B. T. Dermott, J. A. Higgins, J. Burm, W. J. Schaff, and L. F. Eastman, IEEE Electron Device Lett., vol. 17, pp. 584–585, Dec. 1996.
    [2] A. Ozgur, W. Kim, Z. Fan, A. Botchkarev, A. Salvador, S. N. Mohammad, B. Sverdlov, and H. Morkoç, Electron. Lett., vol. 31, pp. 1389–1390, 1995.
    [3] J. C. Zolper, Solid State Electron., vol. 43, pp. 1479–1482, 1999.
    [4] S. C. Jain, M. Willander, J. Narayan, and R. Van Overstraeten, J. Appl. Phys., vol. 87, pp. 965–1006, 2000.
    [5] W. Y. Ho, C. Surya, K. Y. Tong, W. Kim, A. E. Botcharev, and H. Morkoç, “Characterization of flicker noise in GaN-based MODFETs at low drain bias,” IEEE Trans. Electron Devices, vol. 46, pp. 1099–1104, June 1999.
    [6] A. Balandin, S. Cai, R. Li, K. L. Wang, V. R. Rao, and C. R. Viswanathan, IEEE Electron Device Lett., vol. 19, pp. 475–477, Dec. 1998.
    [7] F. N. Hooge, IEEE Trans. Electron Devices, vol. 41, pp. 1926–1935, Nov. 1994.
    [8] F. N. Hooge, Phys. Lett., vol. 29A, pp.139, 1969.
    [9] M. E. Levinshtein, S. L. Rumyantsev, R. Gaska, J. W. Yang and M. S. Shur, Appi. Phys. Lett. 73, 1089 (1998).
    [10] A. Balandin, S. Cai, R. Li, K. L. Wang, Vol. Ramgopal Rao and C. R. Viswanathan, IEEE Electron Dev. Lett. 19, 475 (1998).
    [11] S. L. Rumyantsev, N. Pala, M. S. Shur, and R. Gaska, ”Low frequency noise in GaN metal semiconductors and metal oxide semiconductor field effect transistors”, J. Appl. Phys., 2001, Vol. 90, No. 1, pp. 310-315
    [12] H. H. Chen, S. L. Chen and J. Gong, Symp. Semiconductor Modeling & Simulation, 1993, pp. 39-43
    [13] Z. Celik and T. Y. Hsiang, IEEE Tran. Electron. Dev., 1985, Vol. 32. No. 12, pp.2797-2801
    [14] 國立成功大學博士論文 Electrical Analysis and Low-Frequency Noise Investigations of AlGaN/GaN High Electron Mobility Transistors by Sun-Chin Wei.
    Chapter 5 Reference:
    [1] Y. Z. Chiou, C. S. Chang, S. J. Chang, Y. K. Su, J. R. Chiou, B. R. Huang and J. F. Chen, “Deposition of SiO2 layers on 4H-SiC by photo chemical vapor deposition”, Journal of Vacuum Science and Technology B, Vol. 21, pp. 329-331, 2003.
    [2] Shoou-Jinn Chang, Yan-Kuin Su, Yu-Zung Chiou, Jung-Ran Chiou, Bohr-Ran Huang, Chia-Sheng Chang, and Jone F. Chen, “Deposition of SiO2 layers on GaN by photo chemical vapor deposition”, Journal of The Electrochemical Society, 150 (2) C77-C80, 2003.
    [3] C. K. Wang, Y. Z. Chiou, S. J. Chang, Y. K. Su, B. R. Huang, T. K. Lin and S. C. Chen, “AlGaN/GaN MOSHFET with Photo-CVD SiO2 Gate Oxide”, Journal of Electronics Materials, Vol. 32, No. 5, pp. 407-410, 2003.
    [4] Y. Z. Chiou, S. J. Chang, Y. K. S, C. K. Wang, T. K. Lin and B. R. Huang, “Photo-CVD SiO2 layers on AlGaN and AlGaN/GaN MOSHFET”, Accepted by IEEE Transaction on Electron Device.

    下載圖示 校內:2005-07-12公開
    校外:2005-07-12公開
    QR CODE