簡易檢索 / 詳目顯示

研究生: 徐宇威
Hsu, Yu-Wei
論文名稱: 應用於奈米衛星之電子溫度密度探測器的研發
Development of TeNeP Instrument for Nanosatellites
指導教授: 陳秋榮
Cheng, Chio-Zong
共同指導教授: 小山孝一郎
Oyama, Koh-ichiro
學位類別: 碩士
Master
系所名稱: 理學院 - 太空與電漿科學研究所
Institute of Space and Plasma Sciences
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 111
中文關鍵詞: DC蘭摩爾探針電子溫度密度探測器浮動電位偏移量奈米衛星
外文關鍵詞: DC Langmuir probe, electron temperature and density probe, floating potential shift, nanosatellites
相關次數: 點閱:166下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 奈米衛星將成為研究地球附近電漿環境的主流之一。這些衛星可用作“單一儀器衛星”來量測必要的電漿參數。DC蘭摩爾探針是一個被廣泛應用於量測電漿的儀器。但是使用於奈米衛星任務中,DC蘭摩爾探針遭遇了一個問題;當衛星導體面積不夠大時,無法提供探針穩定的地電位,因此衛星電位被迫下降,進而影響蘭摩爾探針量測到的電流-電壓特性曲線。本論文的目的是研發一不受衛星電位影響的電漿量測儀器--電子溫度密度探測器(TeNeP)--來量測電子溫度和密度。TeNeP的研發是透過修改電子溫度探測器(ETP)的電路系統以增加一個掃頻之射頻(RF)信號電路。ETP早在40年前研發出,透過量測因單頻RF信號而造成之浮動電位偏移量來決定電子溫度。但當一個掃頻RF信號加在ETP的探測器時,TeNeP可透過量測因高區混合共振(upper hybrid resonance)而造成之浮動電位偏移量來決定電子密度。因為浮動電位偏移量不會受到衛星電位的影響,因此,電子溫度密度探測器克服了蘭摩爾探針在有限衛星面積下的量測問題。

    The nanosatellites will become one of the mainstreams especially for the study of near earth plasma environment. These satellites can be used as a “single instrument satellite” which measures only some necessary parameters. DC Langmuir probe is the instrument that is most commonly used to measure the electron characteristics of plasma. However, the DC Langmuir probe encounters a problem for nanosatellite missions because these satellites cannot provide a sufficient conductive surface area for the ground potential which is needed for Langmuir probe, and the satellite potential may be forced to decrease to influence the I-V curve from the Langmuir probe’s measurement. The goal of this thesis is to develop the electron temperature and density probe (TeNeP) which measures the floating potential shift between two probes to determine the electron temperature and density. TeNeP is developed by modifying the electron temperature probe (ETP) which was developed more than 40 years ago for measuring the floating potential shift due to a fixed frequency RF signal applied to the probe to determine the electron temperature. By adding a sweeping frequency circuit to the ETP electronic system, TeNeP can also determine the electron density by measuring the floating potential shift associated with the upper hybrid resonance. Because the floating potential shift is not changed by the satellite potential, TeNeP can overcome the problem of the DC Langmuir probe measurement associated with finite satellite conductive surface area.

    摘要 ........................................................................................................................... I Abstract ................................................................................................................... II 誌謝 ......................................................................................................................... III Content ................................................................................................................... IV List of Tables .......................................................................................................... VI List of Figures ........................................................................................................ VII Chapter 1 Introduction .......................................................................................... 1 1.1 Ionosphere ................................................................................................... 1 1.2 Purpose of this thesis ................................................................................... 4 Chapter 2 Electron Current and Ion Current .................................................... 10 2.1 Electron Current ........................................................................................ 10 2.2 Ion Current ................................................................................................. 13 2.3 Voltage-Current Characteristic for Langmuir Probe .................................. 15 2.3.1 Measurement of Electron Temperature and Density ........................ 17 Chapter 3 Electron Temperature Probe and Impedance Probe Theory ........... 18 3.1 Principle of Electron Temperature Probe ................................................... 18 3.2 System Configuration of Electron Temperature Probe ............................... 22 3.3 Sheath Effect .............................................................................................. 24 3.3.1 Sheath Impedance ............................................................................ 29 3.3.2 Effect of Feeding Capacitor ............................................................. 34 3.4 Principle of Impedance Probe .................................................................... 37 3.5 System Configuration of Impedance Probe ............................................... 39 3.6 Sheath Effect .............................................................................................. 41 3.6.1 Effect of Feeding Capacitor ............................................................. 43 Chapter 4 Electron Temperature and Density Probe System ............................ 46 4.1 System Configuration ................................................................................ 46 4.2 Electric Circuit Design............................................................................... 47 4.2.1 Signal Source-RF Circuit ................................................................. 49 4.2.2 Second Stage Circuit ....................................................................... 64 4.2.3 Electric Circuit Diagram .................................................................. 67 4.3 Sensor ........................................................................................................ 71 4.4 Laboratory Experiment System Architecture ............................................. 72 4.4.1 Plasma Chamber .............................................................................. 73 4.4.2 Plasma Source ................................................................................. 74 4.5 Testing Before Plasma Chamber Experiment ............................................ 75 Chapter 5 Experiment Results ............................................................................. 77 5.1 Electron Temperature Probe System .......................................................... 77 5.1.1 Effect of Oscillator Frequency ......................................................... 78 5.2 Impedance Probe System ........................................................................... 86 5.2.1 Effect of Feeding Capacitance ......................................................... 86 5.3 Electron Temperature and Density Probe System ...................................... 92 5.3.1 Comparison of Te and Ne measurement between TeNeP and LP ..... 92 5.3.2 Comparison of Te and Ne measurement for different magnetic field 97 5.3.3 Plasma Distribution in SPOC ........................................................ 103 Chapter 6 Conclusion ......................................................................................... 109 References ............................................................................................................ 110

    Balmain. K. G (1964)., The Impedance of a short dipole antenna in a magnetoplasma, IEEE Transactions on Antenna and Propagation, 12, 605-617.

    Crawford F. W., R. S. Harp, T. D. Mantei (1968), Resonance‐Rectification Effects in Warm Magnetoplasmas, Journal of Applied Physics 38, 5077.

    David D. Blackwell., and David N. Walker. (2007), Antenna impedance measurements in a magnetized plasma. II. Dipole antenna. Physics of Plasma 14, 092106.

    David D. Blackwell., David N. Walker., William E. Amatucci. (2005), Measurement of absolute electron density with a plasma impedance probe, Review of
    Science Instruments 76, 023503.

    David D. Blackwell., David N. Walker. (2005), Characteristics of the plasma impedance probe with constant bias, Physics of Plasma 12, 093510.

    Dote, T., and T., Ichimiya (1965). Characteristics of Resonance Probes, Journal of Applied Physics 36, 1866.

    Huang, C. T. (2011) Development of Electron Temperature Probe, Institute of Space and Plasma Science, National Cheng Kung University.

    Hsieh, T. Y. (2011) Development of Impedance Probe System for Electron Density Measurement in Ionosphere, Institute of Space and Plasma Science, National Cheng Kung University.

    Johnson E. O. and L. Malter (1950), A floating double probe method for measurements in gas discharges, Physical Review, 80.58.

    Lee, C. H. (2012) Development of Langmuir Probe for measuring electron energy distribution function, Institute of Space and Plasma Science, National Cheng Kung University.

    Merlino R. L. (2007), Understanding Langmuir probe current-voltage characteristics, American Journal of Physics 75, 1078.

    Oyama, K.-I., T. Abe, K. Schlegel, A. Nagy, J. Kim, and K. Marubashi, Electron temperature probe onboard Japan’s Mars orbiter, Earth Planets Space, 51, 1309-1317, 1999.

    Oyama, K.-I., M. Shimoyama, J. Y. Liu, and C. Z. Cheng (2011), Possible interaction between thermal electrons and vibrationally excited N2 in the lower E-region, Annales Geophysicae, 29, 583-590.

    Shimoyama M., K.-I. Oyama, T. Abe, and A. W. Yau (2012), Effect of finite electrode area ratio on high-frequency Langmuir probe measurements, Applied Physics 45 075205.

    Steigies, C. T., M. Hirt, and A. Piel (2002), Electron density and temperature measurements obtained in the DEOS campaign, Advances in Space Research, 29, 893-898.

    Suzuki, T., T. Ono, J. Uemoto, M. Wakabayashi, T. Abe, A. Kumamoto, and M. Iizima (2010), Sheath capacitance observed by impedance probes onboard sounding rockets: Its application to ionospheric plasma diagnostics, Earth Planets and Space, 62:579-587.

    下載圖示 校內:立即公開
    校外:2015-08-20公開
    QR CODE