| 研究生: |
蔣盛全 Chiang, Sheng-Chuan |
|---|---|
| 論文名稱: |
以交流電驅動產生可控制的波形微結構與其在生物粒子上的操控應用 AC Electrokinetics-based Ripple Structure Fabrication and Its Application on Bioparticle Manipulation |
| 指導教授: |
張憲彰
Chang, Hsien-Chang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 生物醫學工程學系 Department of BioMedical Engineering |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 英文 |
| 論文頁數: | 49 |
| 中文關鍵詞: | 交流電滲流 、微型波狀結構 、介電泳力 、粒子混合 、金黃色葡萄球菌 |
| 外文關鍵詞: | AC electroosmosis, micro-ripple structure, dielectrophoresis (DEP), particle mixing, Staphylococcus aureus |
| 相關次數: | 點閱:133 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
針對低體積量樣本內生物樣本的分離與檢測,在研發上一直都是熱門話題。以微流體晶片為基礎,對於含有單種或複數種的生物粒子開發出間具有分離、濃縮、線上可量化功能者,因更符合實用化的需求之故,近兩、三年來,更屢有佳作被揭露。傳統欲進行人體樣本的物質檢測需要藉由生化的方法(免疫分析、螢光呈色),且需將雜質或干擾物去除,以利進行檢測物質的純化,其花費的時間與金錢非常冗長且昂貴,故如何將上述的步驟簡化與加速是現今檢測平台要專注的課題之一。本研究提出,藉由交流電的非均勻電場產生的波形微結構結合交流電滲流的生物粒子操控與即時檢測的微流體晶片,以達到快速檢測、靈敏度高且不需生物標定的生物感測晶片。在波形結構上,藉由使用交流電產生的非均勻電場使在電極上的紫外線固化膠產生波浪狀的立體結構,波浪結構會隨著電場的強弱差別形成波峰或波谷。之後再搭配上介電泳以及交流電滲流的力量,產生出不同於平常的介電泳與交流電滲流現象。本研究運用在波形結構波峰上的介電泳和交流電滲流力量平衡使粒子可以產生混合的效果,這樣的現象可以應用在有修飾的抗原抗體粒子之間的結合效果加強,不同於以往的結合是分子之間的結合係數探討。 研究中使用Staphylococcus aureus 與antibody IgG修飾的粒子,在我們的晶片中進行混合後,利用兩者之間鍵結力量產生凝集的反應,在頻率的調控下可以觀察到有凝集與無凝集的Staphylococcus aureus 的區別。本研究提供一個粒子混合的平台藉由不同粒子表面的修飾便可以進行特定細菌的捕捉與偵測。
In recent years, a lot of research group were conducting work on isolation and detection of biological sample. There were many developing method with variety of different technologies for the particular biological particles in the separation stage. In this study, we proposed the combination of the micro-ripple structure generated by non-uniform electric field and particle manipulation by electrodynamics to achieve rapid detection, high sensitivity and without biological calibration biochips. The micro-ripple structure was made of ultraviolet-curable adhesive that used the UV oven to cure. The structure combined with the DEP and ACEO drag force which have different from the usual dielectrokinetics. In this study, the balance of DEP and ACEO drag force at the crest of micro-ripple structures, so that the particles can produce mixing results. The phoneme can be applied by the combine effects strengthen of the modified antigen-antibody on particles and investigated the combination coefficients. Staphylococcus aureus and Anti-protein A IgG used in a mixing chip study, the agglutination reactions generated based on the bonding strength. Under the frequency control, we can observe difference with and without agglutination of Staphylococcus aureus. This study provides a new platform by mixing particles of different particle surface modification can make a specific capture and detection of bacteria.
[1] Alireza S., Hadi S., Rafael V. D. & Mark A. S. (2011), “Microfluidic mixing using contactless dielectrophoresis”, Electrophoresis, 32, 2569-2578
[2] Ahmad F, & Wu, Hui-Fen (2013), “Rapid and sensitive detection of bacteria via platinum-labeled antibodies and on-particle ionization and enrichment prior to MALDI-TOF mass spectrometry”, Microchimica Acta, 180, 485-492
[3] Brown C. V., Wells G. G., Newton M. I., & McHale G. (2009), “Voltage-programmable liquid optical interface”, Nature Photonics, 3, 403-405
[4] Brown C. V., Al-Shabib W., Wells G. G., McHale G. & Newton M. I. (2010), “Amplitude scaling of a static wrinkle at an oil-air interface created by dielectrophoresis forces”, Applied Physics Letters, 97, 242904
[5] González A., Ramos A., Green N.G., Castellanos A. & Morgan H. (2000), “Fluid flow induced by non-uniform AC electric fields in electrolytes on micro-electrodes II: A linear double layer analysis.”, Physical Review E: Statistical, Nonlinear, and Soft Matter Physics, 61, 4019-4029
[6] Green N.G., Ramos A., Gonzalez A., Morgan H. & Castellanos A. (2000), “Fluid flow induced by non-uniform AC electric fields in electrolytic solutions on micro-electrodes. Part I: Experimental measurements.”, Physical Review E: Statistical, Nonlinear, and Soft Matter Physics, 61, 4011-4018
[7] HA, P. (1978), Dielectrophoresis. Cambridge Uni. Press.
[8] Hideya N., Tetsufumi K. & Satoru W. (2013), “Improvement of particle mixing and fluidization quality in rotating fluidized bed by inclined injection of fluidizing air.”, Chemical Engineering Science, 91, 70-78
[9] Ji S., Walz J. Y. (2012), “Interaction potentials between two colloidal particles surrounded by an extremely bidisperse particle suspension”, Journal of Colloid and Interface Science, 394, 611-618
[10] Ho, Chih-Ming & Tai, Yu-Chong (1998), “Micro-Electro-Mechanical-Systems (Mems) and Fluid Flows”, Annual Review of Fluid Mechanics, 30, 579-612
[11] Masumi I., Takashi M., Nobuo Y., Tomoaki N., Katsuyuki T., Shun’ichi K. (2011) “Fluorophore-labeled nanocapsules displaying IgG Fc-binding domains for the simultaneous detection of multiple antigens”, Biomaterials, 32, 9011-9020
[12] Moon, Hui-Sung, Kwon K., Kim, Seung-Il, Han, H., Sohn, J., Lee, S. & Jung, Hyo-Il (2011), “Continuous separation of breast cancer cells from blood samples using multi-orifice flow fractionation (MOFF) and dielectrophoresis (DEP)”, Lab on a Chip, 11, 1118-1125
[13] Müller T., Gerardino A., Schnelle Th., Shirley S.G., Bordoni F., De Gasperis G., Leoni R., Fuhr G. (1996), “Trapping of Micrometre and Sub-micrometre Particles by High frequency Electric Fields and Hydrodynamic Forces”, Journal of Physics D: Applied Physics, 29, 340-349
[14] Solvas X. C. I, Srusa-Art M., deMello A. J. & Edel J. B. (2010), “Mapping of Fluidic Mixing in Microdroplets with 1 µs Time Resolution Using Fluorescence Lifetime Imaging”, Analytical Chemistry, 82, 3950-3956
[15] Sona K., Eva J., Ludmlla K., Natalla C., David. H., Branlslav R. N., Jlrl S., Jlndrich K., Vojtech A., Rene K. (2013), “Rapid superparamagnetic-beads-based automated immunoseparation of Zn-proteins from Staphylococcus aureus with nanogram yield”, Electrophoresis, 34, 224-234
[16] Trau M., Saville D. A. & Aksay I. A. (1997), “Assembly of colloidal crystals at electrode interfaces”, Langmuir, 13, 6375-6381
[17] Viefhues M., Eichhorn R., Fredrich E., Regtmeier J. & Anselmetti D. (2012), “Continuous and reversible mixing or demixing of nanoparticles by dielectrophoresis”, Lab on a Chip, 12, 485-494
[18] Ramos A., Morgan H., Green N G., & Castellanos A. (1998), “AC Electrokinetics: A review of forces in microelectrode structures”, Journal of Physics D: Applied Physics, 31, 2338-2353
[19] Ramos A., Morgan H., Green N G., & Castellanos A. (1999), “AC electric-field-induced fluid flow in microelectrodes”, Journal of Colloid and Interface Science, 217, 420-422
[20] Park S., Zhang Y., Wang, Tza-Huei, & Yang S. (2011), “Continuous dielectrophoretic bacterial separation and concentration from physiological media of high conductivity”, Lab on a Chip, 11, 2893-2900
[21] Ren, H., Xu S. & Wu, Shin-Tson (2011), “Voltage-expandable liquid crystal surface”, Lab on a Chip, 11, 3426-3430
[22] Rand B. & Melton I. E. (1977), “Particle Interactions in Aqueous Kaolinite Suspensions I. Effect of pH and Electrolyte upon the Mode of Particle Interaction in Homoionic Sodium Kaolinite Suspensions”, Journal of Colloid and Interface Science, 60, 308-320
[23] Wells G. G., Trabi C. L. & Brown C. V. (2010), “Fast reconfigurable liquid optical interface: investigation of higher harmonics in the periodic liquid surface wrinkle”, Proceedings of SPIE, 7716, 77160G
[24] Yeh, Syun-Ru, Seul M. & Shraiamn B. I. (1997), “Assembly of ordered colloidal aggregates by electric-field-induced fluid flow”, Nature, 386, 57-59
校內:2018-08-12公開