| 研究生: |
徐長鴻 Hsu, Chang-Hung |
|---|---|
| 論文名稱: |
探討水解磷脂與膽固醇對脂質雙層膜熱致性相態特性之影響:分子動態模擬研究 Effects of Lysolipid and Cholesterol on Thermotropic Phase Properties of Lipid Bilayer: A Molecular Dynamics Simulation Study |
| 指導教授: |
邱繼正
Chiu, Chi-Cheng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2024 |
| 畢業學年度: | 112 |
| 語文別: | 英文 |
| 論文頁數: | 119 |
| 中文關鍵詞: | 熱響應型微脂體 、分子動力學模擬 、脂域 、相變溫度 |
| 外文關鍵詞: | Thermo-sensitive liposomes, MD simulations, Lipid domains, Phase transition temperature |
| 相關次數: | 點閱:42 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
脂質液胞,或稱為微脂體(liposomes),由於其低毒性與高生物相容性,在藥物傳遞中被廣泛用作藥物載體。溫度對微脂體的結構特性有著關鍵作用:在相變溫度(Tm)以上,脂質膜表現出液態無序(liquid-disordered, Lα)相的液態性質,而在Tm以下,則表現出凝膠相(gel, Lβ)的固態性質。為了確保藥物釋放的有效性,關鍵即相態的控制,因此雙層膜的Tm顯得尤為重要。本研究中,我們採用多尺度分子動力學(molecular dynamics, MD)模擬來研究膽固醇和單棕櫚醯磷脂醯膽鹼(1-palmitoyl-sn-glycero-3-phosphocholine, MPPC)如何影響二棕櫚醯磷脂醯膽鹼(1,2-dipalmitoyl-sn-glycero-3-phosphatidylcholine, DPPC)雙層膜的相行為。在低溫的粗粒化(coarse-grained, CG)模擬中,我們發現MPPC和膽固醇在膜中的分佈並不均勻。MPPC聚集的區域傾向於形成Lα相,而含有較多膽固醇的區域主要處於Lβ相,這導致了雙成分(DPPC + MPPC)與三成分(DPPC + MPPC + CHOL)系統中的相共存。由於觀察到膜內不同區域的組成差異,我們接著使用全原子(united-atom, UA)模型,針對不同組成進行小尺度模擬。結果顯示MPPC的加入在脂質雙層膜中引發了無序效應,在低溫下導致指叉結構的形成。此外MPPC的加入能夠降低脂質膜的Tm。另一方面,膽固醇在Lα相中誘發有序效應,而在Lβ相中引發無序效應。當膜中膽固醇莫耳分率達到0.3後,系統相變趨勢將會消失,導致液態有序(liquid-ordered, Lo)相的出現。這些模擬結果皆與實驗結果一致,為設計具有熱響應性的靶向藥物輸送微脂體提供了微觀上的見解。
Lipid vesicles, or liposomes, are widely used as drug carriers in pharmaceutical applications due to their low toxicity and high biocompatibility. Temperature plays a crucial role in the structural properties of a liposome: the liposomal bilayer exhibits liquid-like properties in the liquid-disordered (Lα) phase above the main phase transition temperature (Tm), and solid-like properties in the gel (Lβ) phase below Tm. Modulating the membrane phase is vital for effective drug release, making the control of Tm in bilayer systems essential. In this work, we employed multiscale molecular dynamics (MD) simulations to investigate how cholesterol and the lysolipid additive MPPC influence the phase behavior of DPPC bilayers. Coarse-grained (CG) simulations at low temperatures revealed the nonuniform distribution of MPPC and cholesterol in the membrane. We observed that regions where MPPC aggregated tended to form the Lα phase, while regions with a higher proportion of cholesterol are predominantly in the Lβ phase. This led to phase coexistence in both the binary (DPPC + MPPC) and ternary (DPPC + MPPC + CHOL) systems. Furthermore, due to compositional differences in various membrane regions, we applied an united-atom (UA) model to perform small-scale simulations under different compositions. The results showed that the addition of MPPC induced a "disordering effect" in the lipid bilayer, causing the formation of interdigitated structures at temperatures below Tm. The incorporation of MPPC can also lower the Tm of the lipid bilayer. On the other hand, cholesterol exerted an "ordering effect" in the Lα phase and a "disordering effect" in the Lβ phase of the lipid membrane. When the molar ratio of cholesterol exceeded 0.3, the Tm of systems disappeared, leading to the emergence of the Lo phase. These simulation results are consistent with experimental findings and provide molecular insights into the design of thermo-responsive liposomes for targeted drug delivery.
[1] Ezike, T. C.; Okpala, U. S.; Onoja, U. L.; Nwike, C. P.; Ezeako, E. C.; Okpara, O. J.; Okoroafor, C. C.; Eze, S. C.; Kalu, O. L.; Odoh, E. C.; et al., Advances in drug delivery systems, challenges and future directions, Heliyon, 2023, 9(6), pp.17488.
[2] Yadav, N.; Mittal, A.; Ali, J.; Sahoo, J., Current Updates in Transdermal Therapeutic Systems and Their Role in Neurological Disorders, Curr Protein Pept Sci, 2021, 22(6), pp.458-469.
[3] Liu, P.; Chen, G.; Zhang, J., A Review of Liposomes as a Drug Delivery System: Current Status of Approved Products, Regulatory Environments, and Future Perspectives, Molecules, 2022, 27(4), pp.1372.
[4] Torchilin, V. P., Recent advances with liposomes as pharmaceutical carriers, Nature Reviews Drug Discovery, 2005, 4(2), pp.145-160.
[5] Pérez-Herrero, E.; Fernández-Medarde, A., Advanced targeted therapies in cancer: Drug nanocarriers, the future of chemotherapy, European Journal of Pharmaceutics and Biopharmaceutics, 2015, 93, pp.52-79.
[6] Emami, S.; Azadmard-Damirchi, S.; Peighambardoust, S. H.; Valizadeh, H.; Hesari, J., Liposomes as carrier vehicles for functional compounds in food sector, J. Exp. Nanosci., 2016, 11(9), pp.737-759.
[7] Sych, T.; Mély, Y.; Römer, W., Lipid self-assembly and lectin-induced reorganization of the plasma membrane, Philos Trans R Soc Lond B Biol Sci, 2018, 373(1747), pp.20170117.
[8] Shinoda, W.; DeVane, R.; Klein, M. L., Zwitterionic Lipid Assemblies: Molecular Dynamics Studies of Monolayers, Bilayers, and Vesicles Using a New Coarse Grain Force Field, The Journal of Physical Chemistry B, 2010, 114(20), pp.6836-6849.
[9] Bi, H.; Xue, J.; Jiang, H.; Gao, S.; Yang, D.; Fang, Y.; Shi, K., Current developments in drug delivery with thermosensitive liposomes, Asian Journal of Pharmaceutical Sciences, 2019, 14(4), pp.365-379.
[10] Nsairat, H.; Khater, D.; Sayed, U.; Odeh, F.; Al Bawab, A.; Alshaer, W., Liposomes: structure, composition, types, and clinical applications, Heliyon, 2022, 8(5), pp.09394.
[11] Bangham, A. D.; Hill, M. W.; Miller, N. G. A., Preparation and Use of Liposomes as Models of Biological Membranes, In Methods in Membrane Biology: Volume 1, Springer US, Boston, MA, 1974, pp.1-68.
[12] Tenchov, R.; Bird, R.; Curtze, A. E.; Zhou, Q., Lipid Nanoparticles - From Liposomes to mRNA Vaccine Delivery, a Landscape of Research Diversity and Advancement, ACS Nano, 2021, 15(11), pp.16982-17015.
[13] Cˇeh, B.; Winterhalter, M.; Frederik, P. M.; Vallner, J. J.; Lasic, D. D., Stealth® liposomes: from theory to product, Advanced Drug Delivery Reviews, 1997, 24(2), pp.165-177.
[14] Zhang, J.-X.; Wang, K.; Mao, Z.-F.; Fan, X.; Jiang, D.-L.; Chen, M.; Cui, L.; Sun, K.; Dang, S.-C., Application of liposomes in drug development — focus on gastroenterological targets, Int J Nanomed, 2013, 8, pp.1325-1334.
[15] Klibanov, A. L.; Maruyama, K.; Beckerleg, A. M.; Torchilin, V. P.; Huang, L., Activity of amphipathic poly(ethylene glycol) 5000 to prolong the circulation time of liposomes depends on the liposome size and is unfavorable for immunoliposome binding to target, Biochimica Et Biophysica Acta Bba - Biomembr, 1991, 1062(2), pp.142-148.
[16] Vaage, J.; Donovan, D.; Mayhew, E.; Abra, R.; Huang, A., Therapy of human ovarian carcinoma xenografts using doxorubicin encapsulated in sterically stabilized liposomes, Cancer, 1993, 72(12), pp.3671-3675.
[17] Sapra, P.; Tyagi, P.; Allen, T. M., Ligand-Targeted Liposomes for Cancer Treatment, Current Drug Delivery, 2005, 2(4), pp.369-381.
[18] Bertrand, N.; Leroux, J.-C., The journey of a drug-carrier in the body: An anatomo-physiological perspective, Journal of Controlled Release, 2012, 161(2), pp.152-163.
[19] Bibi, S.; Lattmann, E.; Mohammed, A. R.; Perrie, Y., Trigger release liposome systems: local and remote controlled delivery?, Journal of Microencapsulation, 2012, 29(3), pp.262-276.
[20] Mura, S.; Nicolas, J.; Couvreur, P., Stimuli-responsive nanocarriers for drug delivery, Nature Materials, 2013, 12(11), pp.991-1003.
[21] Sonju, J. J.; Dahal, A.; Singh, S. S.; Jois, S. D., Peptide-functionalized liposomes as therapeutic and diagnostic tools for cancer treatment, Journal of Controlled Release, 2021, 329, pp.624-644.
[22] Selianitis, D.; Sentoukas, T.; Skandalis, A.; Balafouti, A.; Pippa, N.; Pispas, S., Chapter 9 - Stimulus-responsive liposomes as smart nanocarriers for drug delivery applications, In Novel Platforms for Drug Delivery Applications, Woodhead Publishing, 2023, pp.177-215.
[23] Li, C.; Naveed, M.; Dar, K.; Liu, Z.; Baig, M.; Lv, R.; Saeed, M.; Dingding, C.; Feng, Y.; Xiaohui, Z., Therapeutic advances in cardiac targeted drug delivery: from theory to practice, J Drug Target, 2021, 29(3), pp.235-248.
[24] Kumari, P.; Ghosh, B.; Biswas, S., Nanocarriers for cancer-targeted drug delivery, Journal of Drug Targeting, 2016, 24(3), pp.179-191.
[25] Bi, H.; Xue, J.; Jiang, H.; Gao, S.; Yang, D.; Fang, Y.; Shi, K., Current developments in drug delivery with thermosensitive liposomes, Asian J Pharm Sci, 2019, 14(4), pp.365-379.
[26] Hynynen, K., Hyperthermia-induced drug delivery in humans, Nature Biomedical Engineering, 2018, 2(9), pp.637-639.
[27] Seynhaeve, A. L. B.; Amin, M.; Haemmerich, D.; van Rhoon, G. C.; ten Hagen, T. L. M., Hyperthermia and smart drug delivery systems for solid tumor therapy, Advanced Drug Delivery Reviews, 2020, 163-164, pp.125-144.
[28] Kneidl, B.; Peller, M.; Winter, G.; Lindner, L. H.; Hossann, M., Thermosensitive liposomal drug delivery systems: state of the art review, Int J Nanomed, 2014, 9, pp.4387-4398.
[29] Nagle, J., Theory of the Main Lipid Bilayer Phase Transition, Annual Review of Physical Chemistry, 2003, 31, pp.157-196.
[30] Yatvin, M. B.; Weinstein, J. N.; Dennis, W. H.; Blumenthal, R., Design of liposomes for enhanced local release of drugs by hyperthermia, Science, 1978, 202(4374), pp.1290-1293.
[31] May, J. P.; Li, S.-D., Hyperthermia-induced drug targeting, Expert Opinion on Drug Delivery, 2013, 10(4), pp.511-527.
[32] Hosokawa, T.; Sami, M.; Kato, Y.; Hayakawa, E., Alteration in the temperature-dependent content release property of thermosensitive liposomes in plasma, Chem Pharm Bull (Tokyo), 2003, 51(11), pp.1227-1232.
[33] Pradhan, P.; Giri, J.; Rieken, F.; Koch, C.; Mykhaylyk, O.; Döblinger, M.; Banerjee, R.; Bahadur, D.; Plank, C., Targeted temperature sensitive magnetic liposomes for thermo-chemotherapy, J Control Release, 2010, 142(1), pp.108-121.
[34] Mazzotta, E.; Tavano, L.; Muzzalupo, R., Thermo-sensitive vesicles in controlled drug delivery for chemotherapy, Pharm, 2018, 10(3), pp.150.
[35] Haemmerich, D.; Ramajayam, K. K.; Newton, D. A., Review of the Delivery Kinetics of Thermosensitive Liposomes, Cancers (Basel), 2023, 15(2), pp.398.
[36] Blume, A., A comparative study of the phase transitions of phospholipid bilayers and monolayers, Biochim Biophys Acta, 1979, 557(1), pp.32-44.
[37] Khakbaz, P.; Klauda, J. B., Investigation of phase transitions of saturated phosphocholine lipid bilayers via molecular dynamics simulations, Biochimica Et Biophysica Acta Bba - Biomembr, 2018, 1860(8), pp.1489-1501.
[38] Matsuki, H.; Goto, M.; Tamai, N., Membrane States of Saturated Glycerophospholipids: A Thermodynamic Study of Bilayer Phase Transitions, Chemical and Pharmaceutical Bulletin, 2019, 67(4), pp.300-307.
[39] Cevc, G., How membrane chain-melting phase-transition temperature is affected by the lipid chain asymmetry and degree of unsaturation: an effective chain-length model, Biochemistry, 1991, 30(29), pp.7186-7193.
[40] Wu, F.-G.; Sun, H.-Y.; Zhou, Y.; Deng, G.; Yu, Z.-W., Molecular-level pictures of the phase transitions of saturated and unsaturated phospholipid binary mixtures, RSC Advances, 2015, 5(1), pp.726-733.
[41] Trollmann, M. F. W.; Böckmann, R. A., mRNA lipid nanoparticle phase transition, Biophys J, 2022, 121(20), pp.3927-3939.
[42] Lai, K.; Wang, B.; Zhang, Y.; Zhang, Y., High pressure effect on phase transition behavior of lipid bilayers, Physical Chemistry Chemical Physics, 2012, 14(16), pp.5744-5752.
[43] Kitagawa, S.; Yokochi, N.; Murooka, N., pH-dependence of phase transition of the lipid bilayer of liposomes of stratum corneum lipids, International Journal of Pharmaceutics, 1995, 126(1), pp.49-56.
[44] Chen, J.; Cheng, D.; Li, J.; Wang, Y.; Guo, J.-x.; Chen, Z.-p.; Cai, B.-c.; Yang, T., Influence of lipid composition on the phase transition temperature of liposomes composed of both DPPC and HSPC, Drug Development and Industrial Pharmacy, 2013, 39(2), pp.197-204.
[45] Koynova, R.; Caffrey, M., Phases and phase transitions of the phosphatidylcholines, Biochimica Et Biophysica Acta Bba - Rev Biomembr, 1998, 1376(1), pp.91-145.
[46] Biltonen, R. L.; Lichtenberg, D., The use of differential scanning calorimetry as a tool to characterize liposome preparations, Chem Phys Lipids, 1993, 64(1-3), pp.129-142.
[47] Michnik, A., Thermal stability of bovine serum albumin DSC study, J. Therm. Anal. Calorim., 2003, 71(2), pp.509-519.
[48] Raudino, A.; Sarpietro, M. G.; Pannuzzo, M., The thermodynamics of simple biomembrane mimetic systems, J Pharm Bioallied Sci, 2011, 3(1), pp.15-38.
[49] Wen, J.; Arthur, K.; Chemmalil, L.; Muzammil, S.; Gabrielson, J.; Jiang, Y., Applications of Differential Scanning Calorimetry for Thermal Stability Analysis of Proteins: Qualification of DSC, Journal of Pharmaceutical Sciences, 2012, 101(3), pp.955-964.
[50] Demetzos, C., Differential Scanning Calorimetry (DSC): A Tool to Study the Thermal Behavior of Lipid Bilayers and Liposomal Stability, Journal of Liposome Research, 2008, 18(3), pp.159-173.
[51] Eric, A. S.; Phoebe, K. D., Differential Scanning Calorimetry Studies of Phospholipid Membranes: The Interdigitated Gel Phase, In Applications of Calorimetry in a Wide Context, IntechOpen, Rijeka, 2013.
[52] Lewis, R. N.; Mannock, D. A.; McElhaney, R. N., Differential scanning calorimetry in the study of lipid phase transitions in model and biological membranes: practical considerations, Methods Mol Biol, 2007, 400, pp.171-195.
[53] Huang, C.-h.; Li, S., Calorimetric and molecular mechanics studies of the thermotropic phase behavior of membrane phospholipids, Biochimica Et Biophysica Acta Bba - Rev Biomembr, 1999, 1422(3), pp.273-307.
[54] Bates, J. B., Fourier Transform Infrared Spectroscopy, Science, 1976, 191(4222), pp.31-37.
[55] Wessel, E.; Vogel, C.; Kolomiets, O.; Hoffmann, U.; Siesler, H. W., FT-IR and NIR Spectroscopic Imaging: Principles, Practical Aspects and Applications in Material and Pharmaceutical Sciences, In Infrared and Raman Spectroscopic Imaging, 2009, pp.295-345.
[56] Zarnowiec, P.; Lechowicz, L.; Czerwonka, G.; Kaca, W., Fourier Transform Infrared Spectroscopy (FTIR) as a Tool for the Identification and Differentiation of Pathogenic Bacteria, Current Medicinal Chemistry, 2015, 22(14), pp.1710-1718.
[57] Cagnasso, M.; Boero, V.; Franchini, M. A.; Chorover, J., ATR-FTIR studies of phospholipid vesicle interactions with α-FeOOH and α-Fe2O3 surfaces, Colloids and Surfaces B: Biointerfaces, 2010, 76(2), pp.456-467.
[58] Lewis, R. N. A. H.; McElhaney, R. N., The structure and organization of phospholipid bilayers as revealed by infrared spectroscopy, Chem Phys Lipids, 1998, 96(1), pp.9-21.
[59] Lewis, R. N. A. H.; McElhaney, R. N., Membrane lipid phase transitions and phase organization studied by Fourier transform infrared spectroscopy, Biochimica Et Biophysica Acta Bba - Biomembr, 2013, 1828(10), pp.2347-2358.
[60] Maleš, P.; Brkljača, Z.; Crnolatac, I.; Bakarić, D., Application of MCR-ALS with EFA on FT-IR spectra of lipid bilayers in the assessment of phase transition temperatures: Potential for discernment of coupled events, Colloids and Surfaces B: Biointerfaces, 2021, 201, pp.111645.
[61] Pentak, D., Alternative methods of determining phase transition temperatures of phospholipids that constitute liposomes on the example of DPPC and DMPC, Thermochim Acta, 2014, 584, pp.36-44.
[62] Wong, K. C., Review of NMR Spectroscopy: Basic Principles, Concepts and Applications in Chemistry, Journal of Chemical Education, 2014, 91(8), pp.1103-1104.
[63] Kleinschmidt, J. H.; Tamm, L. K., Structural transitions in short-chain lipid assemblies studied by 31P-NMR spectroscopy, Biophysical journal, 2002, 83(2), pp.994-1003.
[64] Naumann, C.; Brumm, T.; Bayerl, T. M., Phase transition behavior of single phosphatidylcholine bilayers on a solid spherical support studied by DSC, NMR and FT-IR, Biophysical journal, 1992, 63(5), pp.1314-1319.
[65] YashRoy, R. C., Determination of membrane lipid phase transition temperature from 13C-NMR intensities, Journal of Biochemical and Biophysical Methods, 1990, 20(4), pp.353-356.
[66] Stevens, M. M.; Honerkamp-Smith, A. R.; Keller, S. L., Solubility limits of cholesterol , lanosterol , ergosterol , stigmasterol , and β-sitosterol in electroformed lipid vesicles, Soft Matter, 2010, 6(23), pp.5882-5890.
[67] Pentak, D.; Sułkowski, W. W.; Sułkowska, A., Influence of some physical properties of 5-fluorouracil on encapsulation efficiency in liposomes, J. Therm. Anal. Calorim., 2012, 108(1), pp.67-71.
[68] Qin, P. Z.; Dieckmann, T., Application of NMR and EPR methods to the study of RNA, Current Opinion in Structural Biology, 2004, 14(3), pp.350-359.
[69] Roessler, M. M.; Salvadori, E., Principles and applications of EPR spectroscopy in the chemical sciences, Chemical Society Reviews, 2018, 47(8), pp.2534-2553.
[70] Frederick, T. E.; Goff, P. C.; Mair, C. E.; Farver, R. S.; Long, J. R.; Fanucci, G. E., Effects of the endosomal lipid bis(monoacylglycero)phosphate on the thermotropic properties of DPPC: A 2H NMR and spin label EPR study, Chem Phys Lipids, 2010, 163(7), pp.703-711.
[71] Jeschke, G., The contribution of modern EPR to structural biology, Emerging Topics in Life Sciences, 2018, 2(1), pp.9-18.
[72] Schiemann, O.; Prisner, T. F., Long-range distance determinations in biomacromolecules by EPR spectroscopy, Quarterly reviews of biophysics, 2007, 40(1), pp.1-53.
[73] Sułkowski, W.; Pentak, D.; Korus, W.; Sułkowska, A., Effect of temperature on liposome structures studied using EPR spectroscopy, Spectroscopy, 2005, 19(1), pp.37-42.
[74] The various phospholipid aggregates, Phospholipid Reaesrch Center, https://www.phospholipid-research-center.com/phospholipid/aggregates/ (accessed 2024 6/11).
[75] Banno, B.; Ickenstein, L. M.; Chiu, G. N.; Bally, M. B.; Thewalt, J.; Brief, E.; Wasan, E. K., The functional roles of poly (ethylene glycol)‐lipid and lysolipid in the drug retention and release from lysolipid‐containing thermosensitive liposomes in vitro and in vivo, Journal of pharmaceutical sciences, 2010, 99(5), pp.2295-2308.
[76] Needham, D.; Park, J.-Y.; Wright, A. M.; Tong, J., Materials characterization of the low temperature sensitive liposome (LTSL): effects of the lipid composition (lysolipid and DSPE–PEG2000) on the thermal transition and release of doxorubicin, Faraday discussions, 2013, 161, pp.515-534.
[77] Ruiz, A.; Ma, G.; Seitsonen, J.; Pereira, S. G.; Ruokolainen, J.; Al-Jamal, W. T., Encapsulated doxorubicin crystals influence lysolipid temperature-sensitive liposomes release and therapeutic efficacy in vitro and in vivo, Journal of controlled release, 2020, 328, pp.665-678.
[78] Needham, D.; Anyarambhatla, G.; Kong, G.; Dewhirst, M. W., A New Temperature-sensitive Liposome for Use with Mild Hyperthermia: Characterization and Testing in a Human Tumor Xenograft Model1, Cancer Research, 2000, 60(5), pp.1197-1201.
[79] Mills, J. K.; Needham, D., Lysolipid incorporation in dipalmitoylphosphatidylcholine bilayer membranes enhances the ion permeability and drug release rates at the membrane phase transition, Biochim Biophys Acta, 2005, 1716(2), pp.77-96.
[80] Ponce, A. M.; Vujaskovic, Z.; Yuan, F.; Needham, D.; Dewhirst, M. W., Hyperthermia mediated liposomal drug delivery, International Journal of Hyperthermia, 2006, 22(3), pp.205-213.
[81] Landon, C. D.; Park, J. Y.; Needham, D.; Dewhirst, M. W., Nanoscale Drug Delivery and Hyperthermia: The Materials Design and Preclinical and Clinical Testing of Low Temperature-Sensitive Liposomes Used in Combination with Mild Hyperthermia in the Treatment of Local Cancer, Open Nanomed J, 2011, 3, pp.38-64.
[82] Pantusa, M.; Sportelli, L.; Bartucci, R., Phase behaviour of DPPC/Lyso-PPC mixtures by spin-label ESR and spectrophotometry, Spectroscopy, 2008, 22, pp.153-163.
[83] Sandström, M. C.; Ickenstein, L. M.; Mayer, L. D.; Edwards, K., Effects of lipid segregation and lysolipid dissociation on drug release from thermosensitive liposomes, Journal of controlled release, 2005, 107(1), pp.131-142.
[84] Arouri, A.; Mouritsen, O. G., Membrane-perturbing effect of fatty acids and lysolipids, Prog Lipid Res, 2013, 52(1), pp.130-140.
[85] Boissenot, T.; Bordat, A.; Fattal, E.; Tsapis, N., Ultrasound-triggered drug delivery for cancer treatment using drug delivery systems: From theoretical considerations to practical applications, Journal of Controlled Release, 2016, 241, pp.144-163.
[86] Krause, M. R.; Regen, S. L., The Structural Role of Cholesterol in Cell Membranes: From Condensed Bilayers to Lipid Rafts, Accounts of Chemical Research, 2014, 47(12), pp.3512-3521.
[87] Yeagle, P. L., Cholesterol and the cell membrane, Biochimica Et Biophysica Acta Bba - Rev Biomembr, 1985, 822(3), pp.267-287.
[88] Wang, Y.; Gkeka, P.; Fuchs, J. E.; Liedl, K. R.; Cournia, Z., DPPC-cholesterol phase diagram using coarse-grained Molecular Dynamics simulations, Biochimica Et Biophysica Acta Bba - Biomembr, 2016, 1858(11), pp.2846-2857.
[89] Incardona, J. P.; Eaton, S., Cholesterol in signal transduction, Current Opinion in Cell Biology, 2000, 12(2), pp.193-203.
[90] Litvinov, D. Y.; Savushkin, E. V.; Dergunov, A. D., Intracellular and Plasma Membrane Events in Cholesterol Transport and Homeostasis, Journal of Lipids, 2018, 2018(1), pp.3965054.
[91] Maxfield, F. R.; Wüstner, D., Intracellular cholesterol transport, The Journal of Clinical Investigation, 2002, 110(7), pp.891-898.
[92] Marsh, D., Liquid-ordered phases induced by cholesterol: A compendium of binary phase diagrams, Biochimica Et Biophysica Acta Bba - Biomembr, 2010, 1798(3), pp.688-699.
[93] Sodt, A. J.; Pastor, R. W.; Lyman, E., Hexagonal substructure and hydrogen bonding in liquid-ordered phases containing palmitoyl sphingomyelin, Biophysical journal, 2015, 109(5), pp.948-955.
[94] Eeman, M.; Deleu, M., From biological membranes to biomimetic model membranes, Biotechnologie, Agronomie, Société et Environnement, 2010, 14.
[95] Levental, I.; Levental, K. R.; Heberle, F. A., Lipid rafts: controversies resolved, mysteries remain, Trends in cell biology, 2020, 30(5), pp.341-353.
[96] Briuglia, M.-L.; Rotella, C.; McFarlane, A.; Lamprou, D. A., Influence of cholesterol on liposome stability and on in vitro drug release, Drug delivery and translational research, 2015, 5, pp.231-242.
[97] Sadeghi, N.; Deckers, R.; Ozbakir, B.; Akthar, S.; Kok, R. J.; Lammers, T.; Storm, G., Influence of cholesterol inclusion on the doxorubicin release characteristics of lysolipid-based thermosensitive liposomes, Int J Pharm, 2018, 548(2), pp.778-782.
[98] Nakhaei, P.; Margiana, R.; Bokov, D. O.; Abdelbasset, W. K.; Kouhbanani, M. A. J.; Varma, R. S.; Marofi, F.; Jarahian, M.; Beheshtkhoo, N., Liposomes: structure, biomedical applications, and stability parameters with emphasis on cholesterol, Frontiers in bioengineering and biotechnology, 2021, 9, pp.705886.
[99] Egberts, E.; Marrink, S.-J.; Berendsen, H. J., Molecular dynamics simulation of a phospholipid membrane, European biophysics journal, 1994, 22, pp.423-436.
[100] Jefferies, D.; Khalid, S., Atomistic and coarse-grained simulations of membrane proteins: A practical guide, Methods, 2021, 185, pp.15-27.
[101] Ding, W.; Palaiokostas, M.; Wang, W.; Orsi, M., Effects of lipid composition on bilayer membranes quantified by all-atom molecular dynamics, The Journal of Physical Chemistry B, 2015, 119(49), pp.15263-15274.
[102] Shahane, G.; Ding, W.; Palaiokostas, M.; Orsi, M., Physical properties of model biological lipid bilayers: insights from all-atom molecular dynamics simulations, Journal of molecular modeling, 2019, 25, pp.1-13.
[103] Tobias, D. J.; Tu, K.; Klein, M. L., Atomic-scale molecular dynamics simulations of lipid membranes, Current opinion in colloid & interface science, 1997, 2(1), pp.15-26.
[104] Kukol, A., Lipid models for united-atom molecular dynamics simulations of proteins, Journal of Chemical Theory and Computation, 2009, 5(3), pp.615-626.
[105] Capelli, R.; Gardin, A.; Empereur-mot, C.; Doni, G.; Pavan, G. M., A Data-Driven Dimensionality Reduction Approach to Compare and Classify Lipid Force Fields, The Journal of Physical Chemistry B, 2021, 125(28), pp.7785-7796.
[106] Zhuang, X.; Dávila-Contreras, E. M.; Beaven, A. H.; Im, W.; Klauda, J. B., An extensive simulation study of lipid bilayer properties with different head groups, acyl chain lengths, and chain saturations, Biochimica Et Biophysica Acta Bba - Biomembr, 2016, 1858(12), pp.3093-3104.
[107] Joshi, S. Y.; Deshmukh, S. A., A review of advancements in coarse-grained molecular dynamics simulations, Molecular Simulation, 2021, 47(10-11), pp.786-803.
[108] Bond, P. J.; Holyoake, J.; Ivetac, A.; Khalid, S.; Sansom, M. S., Coarse-grained molecular dynamics simulations of membrane proteins and peptides, Journal of structural biology, 2007, 157(3), pp.593-605.
[109] Marrink, S. J.; Mark, A. E., The mechanism of vesicle fusion as revealed by molecular dynamics simulations, Journal of the American Chemical Society, 2003, 125(37), pp.11144-11145.
[110] Seo, S.; Shinoda, W., SPICA Force Field for Lipid Membranes: Domain Formation Induced by Cholesterol, Journal of Chemical Theory and Computation, 2019, 15(1), pp.762-774.
[111] Coppock, P. S.; Kindt, J. T., Determination of Phase Transition Temperatures for Atomistic Models of Lipids from Temperature-Dependent Stripe Domain Growth Kinetics, The Journal of Physical Chemistry B, 2010, 114(35), pp.11468-11473.
[112] Waheed, Q.; Tjörnhammar, R.; Edholm, O., Phase transitions in coarse-grained lipid bilayers containing cholesterol by molecular dynamics simulations, Biophysical journal, 2012, 103(10), pp.2125-2133.
[113] Sun, L.; Böckmann, R. A., Membrane phase transition during heating and cooling: molecular insight into reversible melting, Eur Biophys J, 2018, 47(2), pp.151-164.
[114] Podewitz, M.; Wang, Y.; Gkeka, P.; von Grafenstein, S.; Liedl, K. R.; Cournia, Z., Phase Diagram of a Stratum Corneum Lipid Mixture, The Journal of Physical Chemistry B, 2018, 122(46), pp.10505-10521.
[115] Disalvo, E. Membrane Hydration: The Role of Water in the Structure and Function of Biological Membranes; 2015.
[116] Zhao, W.; Moilanen, D. E.; Fenn, E. E.; Fayer, M. D., Water at the surfaces of aligned phospholipid multibilayer model membranes probed with ultrafast vibrational spectroscopy, J Am Chem Soc, 2008, 130(42), pp.13927-13937.
[117] Fu, S. P.; Peng, Z.; Yuan, H.; Kfoury, R.; Young, Y. N., Lennard-Jones type pair-potential method for coarse-grained lipid bilayer membrane simulations in LAMMPS, Computer Physics Communications, 2017, 210, pp.193-203.
[118] Thompson, A. P.; Aktulga, H. M.; Berger, R.; Bolintineanu, D. S.; Brown, W. M.; Crozier, P. S.; in 't Veld, P. J.; Kohlmeyer, A.; Moore, S. G.; Nguyen, T. D.; et al., LAMMPS - a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales, Computer Physics Communications, 2022, 271, pp.108171.
[119] Caffrey, M. Lipid thermotropic phase transition database (LIPIDAT). Version 1.0 : user's guide; U.S. Dept. of Commerce, National Institute of Standards and Technology, Standard Reference Data Program, 1993.
[120] Lee, W.-H.; Tang, Y.-L.; Chiu, T.-C.; Yang, Y.-M., Synthesis of Ion-Pair Amphiphiles and Calorimetric Study on the Gel to Liquid-Crystalline Phase Transition Behavior of Their Bilayers, Journal of Chemical & Engineering Data, 2015, 60(4), pp.1119-1125.
[121] Chen, C. H.; Tian, C. A.; Chiu, C. C., The Effects of Alkyl Chain Combinations on the Structural and Mechanical Properties of Biomimetic Ion Pair Amphiphile Bilayers, Bioengineering (Basel), 2017, 4(4).
[122] Dong, A. W.; Fong, C.; Waddington, L. J.; Hill, A. J.; Boyd, B. J.; Drummond, C. J., Packing and mobility of hydrocarbon chains in phospholipid lyotropic liquid crystalline lamellar phases and liposomes: characterisation by positron annihilation lifetime spectroscopy (PALS), Phys Chem Chem Phys, 2015, 17(1), pp.276-286.
[123] Martínez, L.; Andrade, R.; Birgin, E. G.; Martínez, J. M., PACKMOL: a package for building initial configurations for molecular dynamics simulations, J Comput Chem, 2009, 30(13), pp.2157-2164.
[124] Mishra, S. K.; Chakraborty, S. K.; Samei, M. E.; Ram, B., A q-Polak–Ribière–Polyak conjugate gradient algorithm for unconstrained optimization problems, Journal of Inequalities and Applications, 2021, 2021(1), pp.25.
[125] Nosé, S., A molecular dynamics method for simulations in the canonical ensemble, Molecular Physics, 1984, 52, pp.255-268.
[126] Nosé, S., A unified formulation of the constant temperature molecular dynamics methods, Journal of Chemical Physics, 1984, 81, pp.511-519.
[127] Hoover, W. G., Canonical dynamics: Equilibrium phase-space distributions, Physical Review A, 1985, 31(3), pp.1695-1697.
[128] Bekker, H.; Berendsen, H.; Dijkstra, E. J.; Achterop, S.; Drunen, R.; van der Spoel, D.; Sijbers, A.; Keegstra, H.; Reitsma, B.; Renardus, M. K. R., Gromacs: A parallel computer for molecular dynamics simulations, Physics Computing, 1993, 92, pp.252-256.
[129] Berendsen, H. J. C.; van der Spoel, D.; van Drunen, R., GROMACS: A message-passing parallel molecular dynamics implementation, Computer Physics Communications, 1995, 91(1), pp.43-56.
[130] Pronk, S.; Páll, S.; Schulz, R.; Larsson, P.; Bjelkmar, P.; Apostolov, R.; Shirts, M. R.; Smith, J. C.; Kasson, P. M.; van der Spoel, D.; et al., GROMACS 4.5: a high-throughput and highly parallel open source molecular simulation toolkit, Bioinformatics, 2013, 29(7), pp.845-854.
[131] Abraham, M. J.; Murtola, T.; Schulz, R.; Páll, S.; Smith, J. C.; Hess, B.; Lindahl, E., GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers, SoftwareX, 2015, 1-2, pp.19-25.
[132] Wang, P.-Y., Coupling and Decoupling between The Fluorescence Probe Dynamics and The Phase Behaviors of Ion Pair Amphiphile Bilayers : A Molecular Dynamics Simulations Study, Department of Chemical Engineering, National Cheng Kung University, Taiwan, 2021.
[133] Lee, S.; Tran, A.; Allsopp, M.; Lim, J. B.; Hénin, J.; Klauda, J. B., CHARMM36 united atom chain model for lipids and surfactants, J Phys Chem B, 2014, 118(2), pp.547-556.
[134] MacKerell, A. D., Jr.; Bashford, D.; Bellott, M.; Dunbrack, R. L., Jr.; Evanseck, J. D.; Field, M. J.; Fischer, S.; Gao, J.; Guo, H.; Ha, S.; et al., All-Atom Empirical Potential for Molecular Modeling and Dynamics Studies of Proteins, The Journal of Physical Chemistry B, 1998, 102(18), pp.3586-3616.
[135] Jo, S.; Kim, T.; Iyer, V. G.; Im, W., CHARMM-GUI: a web-based graphical user interface for CHARMM, J Comput Chem, 2008, 29(11), pp.1859-1865.
[136] Adams, J. B., Bonding Energy Models, In Encyclopedia of Materials: Science and Technology, Elsevier, Oxford, 2001, pp.763-767.
[137] Darden, T.; York, D.; Pedersen, L., Particle mesh Ewald: An N⋅log(N) method for Ewald sums in large systems, The Journal of Chemical Physics, 1993, 98(12), pp.10089-10092.
[138] Essmann, U.; Perera, L.; Berkowitz, M. L.; Darden, T.; Lee, H.; Pedersen, L. G., A smooth particle mesh Ewald method, The Journal of Chemical Physics, 1995, 103(19), pp.8577-8593.
[139] Hess, B.; Bekker, H.; Berendsen, H.; Fraaije, J., LINCS: A Linear Constraint Solver for molecular simulations, Journal of Computational Chemistry, 1998, 18, pp.1463-1472.
[140] Meza, J. C., Steepest descent, WIREs Computational Statistics, 2010, 2(6), pp.719-722.
[141] Parrinello, M.; Rahman, A., Polymorphic transitions in single crystals: A new molecular dynamics method, Journal of Applied Physics, 1981, 52, pp.7182-7190.
[142] Zheng, J.-T., The pH-induced Phase Transition of Catanionic Vesicular Bilayers with Various Amphiphilic Components: A Molecular Dynamics Simulations Study, Department of Chemical Engineering, National Cheng Kung University, Taiwan, 2023.
[143] Heller, H.; Schaefer, M.; Schulten, K., Molecular dynamics simulation of a bilayer of 200 lipids in the gel and in the liquid crystal phase, The Journal of Physical Chemistry, 1993, 97, pp.8343-8360.
[144] Chacón, E.; Tarazona, P.; Bresme, F., A computer simulation approach to quantify the true area and true area compressibility modulus of biological membranes, The Journal of Chemical Physics, 2015, 143(3), pp.034706.
[145] Koenig, B. W.; Strey, H. H.; Gawrisch, K., Membrane lateral compressibility determined by NMR and x-ray diffraction: effect of acyl chain polyunsaturation, Biophysical Journal, 1997, 73(4), pp.1954-1966.
[146] Khelashvili, G.; Harries, D., How cholesterol tilt modulates the mechanical properties of saturated and unsaturated lipid membranes, J Phys Chem B, 2013, 117(8), pp.2411-2421.
[147] Khelashvili, G.; Pabst, G.; Harries, D., Cholesterol orientation and tilt modulus in DMPC bilayers, J Phys Chem B, 2010, 114(22), pp.7524-7534.
[148] Sun, L.; Böckmann, R. A., Membrane phase transition during heating and cooling: molecular insight into reversible melting, European Biophysics Journal, 2018, 47(2), pp.151-164.
[149] Ziaunys, M.; Sakalauskas, A.; Mikalauskaite, K.; Snieckute, R.; Smirnovas, V., Temperature-Dependent Structural Variability of Prion Protein Amyloid Fibrils, International Journal of Molecular Sciences, 2021, 22, pp.5075.
[150] Dutt, S.; Siril, P.; Remita, S., Swollen liquid crystals (SLCs): A versatile template for the synthesis of nano structured materials, RSC Advances, 2017, 7, pp.5733-5750.
[151] Mills, J. K.; Needham, D., Lysolipid incorporation in dipalmitoylphosphatidylcholine bilayer membranes enhances the ion permeability and drug release rates at the membrane phase transition, Biochimica Et Biophysica Acta Bba - Biomembr, 2005, 1716(2), pp.77-96.
[152] Pata, V.; Dan, N., Effect of Membrane Characteristics on Phase Separation and Domain Formation in Cholesterol-Lipid Mixtures, Biophysical Journal, 2005, 88(2), pp.916-924.
[153] Pöhnl, M.; Trollmann, M. F. W.; Böckmann, R. A., Nonuniversal impact of cholesterol on membranes mobility, curvature sensing and elasticity, Nature Communications, 2023, 14(1), pp.8038.
[154] Yang, S. T.; Kreutzberger, A. J. B.; Lee, J.; Kiessling, V.; Tamm, L. K., The role of cholesterol in membrane fusion, Chem Phys Lipids, 2016, 199, pp.136-143.
[155] Cheng, C.-Y.; Lai, Y.-F.; Hsieh, Y.-L.; Wu, C.-H.; Chiu, C.-c.; Yang, Y.-M., Divergent effects of cholesterol on the structure and fluidity of liposome and catanionic vesicle membranes, FEBS Letters, 2022, 596(14), pp.1827-1838.
[156] Eckhardt, D.; Semeraro, E. F.; Steigenberger, J.; Schnur, J.; Kalie, L.; Massing, U.; Pabst, G.; Heerklotz, H., Eutectic Resolves Lysolipid Paradox in Thermoresponsive Liposomes, Molecular Pharmaceutics, 2024, 21(4), pp.1768-1776.
[157] Leonenko, Z. V.; Finot, E.; Ma, H.; Dahms, T. E. S.; Cramb, D. T., Investigation of Temperature-Induced Phase Transitions in DOPC and DPPC Phospholipid Bilayers Using Temperature-Controlled Scanning Force Microscopy, Biophysical Journal, 2004, 86(6), pp.3783-3793.
[158] Kuo, A.-T.; Chang, C.-H., Cholesterol-Induced Condensing and Disordering Effects on a Rigid Catanionic Bilayer: A Molecular Dynamics Study, Langmuir, 2014, 30(1), pp.55-62.
[159] Leekumjorn, S.; Sum, A. K., Molecular studies of the gel to liquid-crystalline phase transition for fully hydrated DPPC and DPPE bilayers, Biochimica Et Biophysica Acta Bba - Biomembr, 2007, 1768(2), pp.354-365.
校內:2027-08-31公開