| 研究生: |
許育榕 Hsu, Yu-Jung |
|---|---|
| 論文名稱: |
在可撓式基板製作氧化鋅奈米柱紫外光檢測器之研究 The study of ZnO nanorods ultraviolet photodetectors prepared on flexible substrate |
| 指導教授: |
張守進
Chang, Shoou-Jinn |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程研究所 Institute of Electro-Optical Science and Engineering |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 英文 |
| 論文頁數: | 87 |
| 中文關鍵詞: | 可撓式基板 、氧化鋅 、奈米注 、紫外光檢測器 |
| 外文關鍵詞: | flexible substrate, ZnO, nanorods, UV photodetector |
| 相關次數: | 點閱:93 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文討論在可撓式基板上製作氧化鋅奈米柱紫外光檢測器之研究。作者藉由水溶液法成長氧化鋅奈米柱在檢測器表面以增進收光能力,進而增加光檢測器之紫外光對可見光拒斥比。元件在不同彎曲程度下的紫外光檢測能力也在本論文中報告。
論文首先敘述元件製作的部分,作者先在PI基板上濺鍍厚度約130nm之氧化鋅薄膜,並且經過300℃通氧氣之環境下回火40分鐘,接著以黃光微影之方式在薄膜上製作指插狀銀/金(40nm/50nm)蕭特基電極,最後在元件表面成長氧化鋅奈米柱以增進收光能力。單純之氧化鋅薄膜光檢測器也一併製備作為對照。
在氧化鋅奈米柱成長的部分,作者利用硝酸鋅及HMTA粉末調配水溶液法之反應溶液,並且研究在不同成長濃度及不同成長時間下所成長出之氧化鋅奈米柱,結果得到在莫爾濃度0.1M下成長一小時為最佳成長參數,其成長之奈米柱長度約為800nm,成長方向為(0002)。
元件製作完成後,作者量測元件的各項表現,在光響應方面,奈米柱光檢測器的紫外光對可見光響應拒斥比達到95,明顯大於薄膜檢測器的5.3,此一光電特性之增進與奈米柱能有效收光,減少表面反射有關。光反應速度及雜訊等表現也在論文中報告,結果顯示奈米柱光檢測器無論在反應速度或雜訊量測上表現皆優於薄膜檢測器,這可能與奈米柱的良好品質及可撓式基板上濺鍍之氧化鋅薄膜回火溫度受限於基板的形變溫度以下有關。
最後作者也量測此可撓式光檢測器在不同彎曲度下的光電特性,其結果發現檢測器在彎曲的情況下暗電流有些微下降且響應拒斥比相對上升,此外檢測截止波段也無明顯偏移,這表示此可撓式元件在不同撓曲度下使用仍有很好的檢測能力。
The thesis discusses the study of ZnO nanorods ultraviolet photodetectors prepared on flexible substrate. The author synthesized ZnO nanorods on the surface of the photodetector by aqueous solution method. The rods can improve the light trapping and enhance the UV to visible rejection ratio of the photodetector. Performances of the flexible devices in different bending situations were also reported in this thesis.
In the beginning, the author performs the fabrication of the device. ZnO film with thickness of 130 nm was grown on Polyimide (PI) substrate by RF sputtering system. After 300℃ and 40 min annealing process in O2 ambient, the Ag/Au(40/50nm) interdigital Schottky electrodes were formed with standard lithography process. Finally, ZnO nanorods were grown on the surface of the device to enhance the light trapping. The simply ZnO film photodetector was also fabricated for comparison.
In the portion of ZnO nanorods syntheses, zinc nitrate [Zn(NO3)2] and hexamethylenetetramine (HMTA) were used in the aqueous solution method. Use 0.1M solution concentration and 1 hour growth time, we can get 800nm long ZnO nanorods with (0002) growth orientation.
Subsequently, the performances of the nanorods photodetector were reported. The UV to visible rejection ratio is 95, which is better than 5.3, the value of detector without nanorods. This improvement can be attributed to the light trapping and the reflection reduction properties of nanorods. Other performances like timeresponse and noise characteristics were also reported. The results show that ZnO nanorods photodetector is better than ZnO film photodetector not only in photoresponse but also in noise characteristics; it may be related to the good quality of nanorods and the limitation in annealing temperature of the sputtered ZnO film on flexible substrate.
Finally, the performances of the flexible devices in bending situation were measured. The author found that the dark current decreased slightly and the rejection ratio increased when the device was bended, besides, shift of the cutoff wavelength was not observed during bending. The results show that the flexible devices have high detection ability in bending situation.
[1] Y. Chen, D. M. Bagnall, H. Koh, K. Park, Z. Zhu, T.
Yao, J. Appl. Phys., 84, 3912 (1998).
[2] R. D. Vispute, M. He, X. Tang, Y. X. Li, L. G. Salamanca-Riba, A. A. Iliadis, K. A. Jones, Appl. Phys. Lett. 73, 348 (1998).
[3] D.C. Look, Mater. Sci. Eng. B 80, 383 (2001).
[4] Abstract Booklet, “Second International Workshop on Zinc Oxide”, edited by D. C. Look , Wright State University, Dayton, (2002).
[5]Y. Chen, D. M. Bagnall, H. J. Koh, K. T. Park, K. Hiraga, Z. Zhu, and T. Yao, J. Appl. Phys. 84, 3912 (1998).
[6]See, for example, the discussion at http://ncsr.csci-va.com/materials/zno.asp
[7]D. W. Palmer, http://www.semiconductors.co.uk, (2002).
[8] Reynolds D C, Look D C, Jogai B, Litton C W, Collins T C, HarschW and Cantwell G, Phys. Rev. B 57 12151 (1998).
[9] Choy J H, Jang E S, Won J H, Chung J H, Jang D J and Kim Y W Adv. Mater. 15 1911–4 (2003).
[10] H. Sheng, S. Muthukumar, N. W. Emanetoglu, and Y. Lu, Appl. Phys. Lett. 80, 12, 25 March (2002).
[11] D. C. Look, Mater. Sci. Eng. B 80, 383 (2001).
[12] Wu J J and Liu S C, Adv. Mater. 14 215–8 (2002).
[13] Yuan H and Zhang Y, J. Cryst. Growth, 263, 119–24 (2004).
[14] Sun Y, Fuge G M and Ashfold M N R, Chem. Phys. Lett. 396 21–6 (2004).
[15] Zhang H Z, Sun X C, Wang R M and Yu D P, J. Cryst. Growth 269 464–71 (2004).
[16] Cui J B and Gibson U J, J. Phys. Chem. B 109 22074–7 (2005).
[17] Greene L E, Law M, Tan D H, Montano M, Goldberger J, Somorjai G and Yang P D, Nano Lett. 5 1231–6 (2005).
[18] Xu S, Lao C, Weintraub B and Wang Z L, J. Mater. Res. 23 2072–7 (2008).
[19] Zhou Y, Wu W B, Hu G D, Wu H T and Cui S G, Mater.
Res. Bull. 43 2113–8 (2008).
[20] Greene L E, Law M, Goldberger J, Kim F, Johnson J C, Zhang Y F, Saykally R J and Yang P D, Angew. Chem. Int. Edn 42 3031–4 (2003).
[21] Xu, J. M. Plastic Electronics and Future Trends in Microelectronics. Synth. Met., 115, 1–3 (2000).
[22] Service, R. F., New Age Semiconductors Pick Up the Pace. Science, 287, 415–417(2000).
[23] Wisnieff, R. L.; Ritsko, J. J. “Electronic Displays for Information Technology”, IBM J. Res., 44, 409–422 (2000).
[24] Shaw, J. M.; Seidler, P. F. Organic Electronics: Introduction. IBM J. Res., 45, 3–9 (2001).
[25] Rogers, J. A. “Toward Paperlike Displays”. Science, 291, 1502–1503 (2001).
[26] Rogers, J. A.; Bao, Z. “Printed Plastic Electronics and Paperlike Displays”, J. Polym. Sci., Part A: Polym. Chem, 40, 3327–3334 (2002).
[27] Chen, Y.; Au, J.; Kazlas, P.; Ritenour, A.; Gates, H.; McCreary, M. “Flexible Active-Matrix Electronic Ink Display”, Nature, 423, 136 (2003).
[28] Liang-Wen Ji, et al., "Characteristic Improvements of ZnO-Based Metal–Semiconductor–Metal Photodetector on Flexible Substrate with ZnO Cap Layer," Jpn. J. Appl. Phys., 49, 052201s (2010).
[29]See, for example, the discussion at http://en.wikipedia.org/wiki/Polyethylene_terephthalate
[30]See, for example, the discussion at http://en.wikipedia.org/wiki/Polyimide
[31] D. K. Schroder, Semiconductor Material and Device Characterization, John Wiley & Sons, Inc., (1998).
[32] S. M. Sze, Physics of Semiconductor Devices, John Wiley & Sons, New York (1981).
[33] E. H. Rhoderick and R. H. Williams, Metal-Semiconductor Contacts, 2nd ed. ch. 1. New York, Oxford University Press, (1988).
[34] W. Schottky, Naturewissenschaften, 26, 843, (1938).
[35] S. M. Sze, Physics of Semiconductor Devices, 2nd ed., Wiley, 225 (1981).
[36] F. A. Padovani and R. Stratton, Solid State Electron, 9, 695 (1966).
[37] C. R. Crowell, V. L. Rideout, Solid State Electron, 12, 89 (1969).
[38] V. L. Rideout, Solid State Electron, 18, 541, (1975)
[39] M. Marso, M. Horstmann, H. Hardtdegen, P. Kordos and H. Luth, Solid State Electron, 41, 25, (1997)
[40] P. Bhattacharya, Semiconductor optoelectronic devices, (2nd ed.), Prentice Hall, (1997).
[41] J. L. Vossen and W. Kern, Thin Film Process, Academic Press, New York, 131 (1978).
[42] S. I. Shah, Handbook of Thin Film Process Technology, Institute of Physics Pub., Bristol, UK, P.A3.0.1 (1995).
[43] S. M. Sze, VLSI Technology, McGraw-Hill, New York, 387, (1978).
[44] B. Heying, X. H. Wu, S. Keller, Y. Li, D. Kapolnek, B. P. Keller, S. P. DenBaars and J. S. Speck, Appl Phys Lett, 68, 643 (1996)
[45] M. G. Cheong, K. S. Kim, C. S. Oh, N. W. Namgung, G. M. Yang, C. H. Hong, K. Y. Lim, E. K. Suh, K. S. Nahm, H. J. Lee, D. H. Lim and A. Yoshikawa, Appl Phys Lett, 77, 2557 (2000)
[46] Y. Fu, Y. T. Moon, F. Yun, U. Ozgur, J. Q. Xie, S. Dogan, H. Morkoc, C. K. Inoki, T. S. Kuan, L. Zhou and D. J. Smith, Appl Phys Lett, 86, (2005)
[47] Aldert van der Ziel, Noise in Solid state Devices and circuits, John Wiley & Sons publication (1986).
[48] F. N. Hooge, J. Kedzia, and L. K. J. Vandamme, “Boundary scattering and 1/f noise,” J. Appl. Phys., vol. 50, pp. 8087–8089, (1979).
[49] E. Monroy, F. Calle, E. Munoz, F. Omnes, P. Gibart, J. A. Munoz, “AlxGa1-xN:Si Schottky barrier photodiodes with fast response and high detectivity,” Electron. Lett., vol. 36, no. 18, pp. 1581–1583 (2000).
[50] Xu C K, Shin P, Cao L L, Gao D, J. Phys. Chem. C, 114 125–9 (2010)
[51] Q. Ahsanulhaq, A. Umar, Y. B. Hahn, “Growth of aligned ZnO nanorods and nanopencils on ZnO/Si in aqueous solution: growth mechanism and structural and optical properties,” Nanotechnology, vol. 18, no. 11, (2007).
[52] Xu S, Lao C, Weintraub B, Wang Z L, J. Mater. Res., 23 2072–7 (2008)
[53] Lee Y, Zhang Y, Ng S L G, Kartawidjaja F C, Wang J, J. Am. Ceram. Soc., 92, 1940–5 (2009).
[54] A. B. Djurisic, and Y. H. Leung, “Optical properties of ZnO nanostructures,” Small, vol. 2, no. 8-9, pp. 944-961 (2006).
[55] K. Vanheusden,et al., “Correlation between photoluminescence and oxygen vacancies in ZnO phosphors”, Appl. Phys. Lett., 68 (3), 15 January (1996).
[56] X. B. Cao, et al., "Decoration of Textured ZnO Nanowires Array with CdTe Quantum Dots: Enhanced Light-Trapping Effect and Photogenerated Charge Separation," Journal of Physical Chemistry C, vol. 112, pp. 20560-20566 (2008).
[57] Bube, R. H. Photoconductivity of Solids; Wiley, New York, p461.(1960).
[58] Sze, S. M. Physics of Semiconductor Devices, (2nd ed.) Chapter 13,Wiley: New York, (1981).
[59] C. Soci, A. Zhang, B. Xiang, S. A. Dayeh, D. P. R. Aplin, J. Park, X. Y. Bao, Y. H. Lo, and D. Wang, “ZnO nanowire UV photodetectors with high internal gain,” Nano Letters, vol. 7, no. 4, pp. 1003-1009 (2007).
[60] Yizheng, et al., "Solution –Processed Ultraviolet Photodetectors Based on Colloidal ZnO Nanoparticles," Nano Letters, vol. 8, no. 6, pp. 1649-1653 (2008).
[61] A. Rose, Concepts in Photoconductivity and Allied Problems, Krieger Publishing Company, New York (1978).
[62] P. Sharma, K. Sreenivas, and K. V. Rao, “Analysis of ultraviolet photoconductivity in ZnO films prepared by unbalanced magnetron sputtering,” Journal of Applied Physics, vol. 93, no. 7, pp. 3963-3970 (2003).
[63] D. Basak, G. Amin, B. Mallik, G. K. Paul, and S. K. Sen, “Photoconductive UV detectors on sol-gel-synthesized ZnO films,” Journal of Crystal Growth, vol. 256, no. 1-2, pp. 73-77 (2003).
[64] Y. Takahashi, M. Kanamori, A. Kondoh, H. Minoura, and Y. Ohya, “Photoconductivity of Ultrathin Zinc-Oxide Films,” Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers, vol. 33, no. 12A, pp. 6611-6615 (1994).
[65] H. Kind, H. Q. Yan, B. Messer, M. Law, and P. D. Yang, “Nanowire ultraviolet photodetectors and optical switches,” Advanced Materials, vol. 14, no. 2, pp. 158 (2002).
[66] B. Yuan, X. J. Zheng, Y. Q. Chen, B. Yang, and T. Zhang, “High photosensitivity and low dark current of photoconductive semiconductor switch based on ZnO single nanobelt,” Solid-State Electronics, vol. 55, no. 1, pp. 49-53 (2011).
[67] N. H. Al-Hardan, M. J. Abdullah, H. Ahmad, A. A. Aziz, and L. Y. Low, “Investigation on UV photodetector behavior of RF-sputtered ZnO by impedance spectroscopy,” Solid-State Electronics, vol. 55, no. 1, pp. 59-63 (2011).
[68] C. Soci, A. Zhang, B. Xiang, S. A. Dayeh, D. P. R. Aplin, J. Park, X. Y. Bao, Y. H. Lo, and D. Wang, “ZnO nanowire UV photodetectors with high internal gain,” Nano Letters, vol. 7, no. 4, pp. 1003-1009, (2007).
[69] L. W. Ji, S. M. Peng, Y. K. Su, S. J. Young, C. Z. Wu, and W. B. Cheng, “Ultraviolet photodetectors based on selectively grown ZnO nanorod arrays,” Applied Physics Letters, vol. 94, no. 20, (2009).
[70]Y. Z. Jin, et al., "Solution-processed ultraviolet photodetedtors based on colloidal ZnO nanoparticles," Nano Letters, vol. 8, pp. 1649-1653, Jun (2008).
[71] C. Soci, A. Zhang, B. Xiang, S. A. Dayeh, D. P. R. Aplin, J. Park, X. Y. Bao, Y. H. Lo, and D. Wang, “ZnO nanowire UV photodetectors with high internal gain,” Nano Letters, vol. 7, no. 4, pp. 1003-1009 (2007).
[72] C. Soci, A. Zhang, B. Xiang, S. A. Dayeh, D. P. R. Aplin, J. Park, X. Y. Bao, Y. H. Lo, and D. Wang, “ZnO nanowire UV photodetectors with high internal gain,” Nano Letters, vol. 7, no. 4, pp. 1003-1009, (2007).
[73] Yizheng, et al., "Solution –Processed Ultraviolet Photodetectors Based on Colloidal ZnO Nanoparticles", Nano Letters, vol. 8, no. 6, pp. 1649-1653 (2008).
[74] Ito S, et al., “Mechanical stress effect of etch-stop nitride and its impact on deep submicron transistor design”, Int. Electron Device Meeting Tech. Dig. pp 247–50 (2000).
[75] Ge C H ,et al. “Process-strained Si CMOS technology featuring 3D strain engineering” IEDM Tech. Dig. pp 73–6 (2003).
[76] Ghani T ,et al. “A 90 nm high volume manufacturing logic technology featuring novel 45 nm gate length strained silicon CMOS transistors”, IEDM Tech. Dig. pp 978–80 (2003).
[77] Yeo Y C, Sun J and Ong E H , “Strained channel transistor using strain field induced by source and drain stressors”, Material Research Soc. Symp. 809 219 (2004).
[78] Kuhn K J, Mei D, Post I and Neirynck J “Scaling challenges for 0.13 mm generation shallow trench isolation”, IEEE Int. Semiconductor Manufacturing Symp. pp 187–90 (2001).
[79] Chen C H, et al. “Stress memorization technique (SMT) by selectively strained nitride capping for sub-65 nm high-performance strained-Si device application”, Symp. VLSI Technol. pp 56–57 (2004).
[80]Yee-Chia Yeo, “Enhancing CMOS transistor performance using lattice-mismatched materials in source/drain regions”, Semicond. Sci. Technol., 22, S177–S182 (2007).
[81] F. N. Hooge, J. Kedzia, and L. K. J. Vandamme, “Boundary scattering and 1/f noise,” J. Appl. Phys., vol. 50, pp. 8087–8089 (1979).
[82] E. Monroy, F. Calle, E. Munoz, F. Omnes, P. Gibart, and J. A. Munoz, “AlxGa1-xN:Si Schottky barrier photodiodes with fast response and high detectivity,” Electron. Lett., vol. 36, no. 18, pp. 1581–1583 (2000).
[83] Q. Chen, et al., "Schottky barrier detectors on GaN for visible-blind ultraviolet detection," Applied Physics Letters, vol. 70, pp. 2277-2279 (1997).
[84] F. Chaabouni, M. Abaab, B. Rezig, “Metrological characteristics of ZNO oxygen sensor at room temperature”, Sensors and Actuators B 100 , 200–204 (2004).
[85] L. C. Tien, P. W. Sadik, D. P. Norton, L. F. Voss, and S. J. Pearton, “Hydrogen sensing at room temperature with Pt-coated ZnO thin films and nanorods”, APPLIED PHYSICS LETTERS 87, 222106 , (2005).
[86] Hua Zhao, Xintai Su, Feng Xiao, Jide Wang, Jikang Jian, “Synthesis and gas sensor properties of flower-like 3D ZnO microstructures”, Materials Science and Engineering B 176 , 611–615 (2011).
[87] Xiaoyan Zhou,JianpengLi,MingMa,QingzhongXue, “Effect ofethanolgasontheelectricalpropertiesofZnOnanorods”, Physica E 43, 1056–1060 (2011).
[88] Hyun-Uk Lee, Kyun Ahn, Su-Jae Lee, Jong-Pil Kim, Hyun-Gyu Kim, Se-Young Jeong, and Chae-Ryong Cho, “ZnO nanobarbed fibers: Fabrication, sensing NO2 gas, and their sensing mechanism”, APPLIED PHYSICS LETTERS 98, 193114 (2011).
[89] Jaehyun Kim , Kijung Yong, “Mechanism Study of ZnO Nanorod-Bundle Sensors for H2S Gas Sensing”, J. Phys. Chem. C , 115, 7218–7224 (2011).