簡易檢索 / 詳目顯示

研究生: 陳怡靜
Chen, Yi-Ching
論文名稱: 具多層電子及電洞傳輸結構之鈣鈦礦太陽能電池特性研究
Performance Investigation of Perovskite Solar Cells with Multi-Layer Electron and Hole Transport Structures
指導教授: 李欣縈
Lee, Hsin-Ying
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Photonics
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 87
中文關鍵詞: 鈣鈦礦傳輸層遷移率有機太陽能電池
外文關鍵詞: perovskite solar cells, transport layer, mobility
相關次數: 點閱:109下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文利用多層電子及電洞傳輸結構改善太陽能電池元件之電子與電洞遷移率匹配問題,以空間電荷限制電流法計算元件之單一電子、電洞遷移率,藉由調整傳輸層使遷移率相互匹配,減少載子復合機率,提升元件之開路電壓、短路電流及轉換效率。首先為單層電子傳輸層之實驗結果,材料分別使用PC60BM、PC70BM及C70,其最佳厚度分別為30 nm、30 nm及40 nm;以C70為電子傳輸層的元件具有最平衡的遷移率,其元件特性之開路電壓為0.8 V、短路電流密度為21.43 mA/cm^2及轉換效率為9.37 %。於雙層電子傳輸層研究中,則分別討論電子遷移率大於電洞遷移率之材料PC60BM及PC70BM搭配電子遷移率小於電洞遷移率材料C70,而PC60BM/C70最佳厚度為30 nm/20 nm,PC70BM/C70最佳厚度為25 nm/20 nm,兩者雙層電子傳輸層之電子、電洞遷移率平衡方面皆優於單層電子傳輸層C70,其中又以PC70BM/C70更為平衡,其元件特性提升為開路電壓為0.82 V、短路電流密度為24.11 mA/cm^2及轉換效率則達12.71 %;最後,加入PTB7電洞傳輸層改善元件電洞遷移率,其最佳轉速為3000 rpm,時間為40 s,厚度約為53 nm,於退火溫度為100 oC時,有最佳元件特性,其開路電壓提升至0.86 V、短路電流密度增加至24.95 mA/cm^2及轉換效率則達14.11 %。

    To address the mobility imbalance problems, multi-layer electron and hole transport structures were added to perovskite solar cells(PSCs) and we used the space-charge-limited current (SCLC) method to calculate the electron and hole mobilities. First of all, single electron transport layers (PC60BM, PC70BM, and C70) were tested, and C70 layer was the most balanced carrier mobility in PSCs with Voc of 0.8 V, Jsc of 21.43 mA/cm^2, and PCE of 9.37%. The next, we uesd PC60BM and PC70BM (in which the electron mobility was greater than the hole mobility) combined with C70 (in which the electron mobility was less than the hole mobility) as the double electron transport layers to adjust mobility in the device. Further, PC70BM/C70 was found to be more carrier mobility balanced than PC60BM/C70 in PSCs, leading to Voc of 0.82 V, Jsc of 24.11 mA/cm^2, and PCE of 12.71%. Eventually, PTB7 film was added to improve the hole mobility and led to an enhanced Voc of 0.86 V, Jsc of 21.95 mA/cm^2, and PCE of 14.11%.

    目錄 摘要 II Abstract IV 誌謝 X 目錄 XII 表目錄 XV 圖目錄 XVII 第一章 序論 1 1-1 研究動機及目的 1 1-2 有機太陽能電池簡介 2 1-2-1 染料敏化太陽能電池 3 1-2-2 小分子有機太陽能電池 3 1-2-3 高分子有機太陽能電池 4 1-2-4 鈣鈦礦有機太陽能電池 6 參考文獻 9 第二章 太陽能電池之基本理論及鈣鈦礦成膜方法 13 2-1 太陽光譜 13 2-2 光電效應與太陽能電池 13 2-3 有機材料能帶理論 14 2-4 有機太陽能電池之工作原理 15 2-5 太陽能電池各項參數 16 2-6 鈣鈦礦成膜方法 19 2-7 空間電荷限制電流(SCLC) 21 參考文獻 28 第三章 實驗機台、材料及方法介紹 31 3-1 製程及量測機台介紹 31 3-2 材料介紹 34 3-3 實驗步驟 35 3-3-1 基板清潔 35 3-3-2 定義陽極圖形 36 3-3-3 製作電洞傳輸層 38 3-3-4 製作主動層 38 3-3-5 製作電子傳輸層 39 3-3-6 製作激子阻擋層 39 3-3-7 製作陰極 39 參考文獻 50 第四章 具多層電子及電洞傳輸結構之鈣鈦礦太陽能電池特性研究 53 4-1 前言 53 4-2 鈣鈦礦太陽能電池特性分析與最佳化 53 4-2-1 單層電子傳輸層(PC60BM、PC70BM與C70) 53 4-2-2 雙層電子傳輸層(PC60BM/ C70與PC70BM/C70) 56 4-2-3 添加電洞傳輸層PTB7搭配PC70BM/C70雙層電子傳輸層之鈣鈦礦太陽能電池 60 第五章 結論與未來規劃 86

    第一章
    [1] C. Azar, K. Lindgren, and B. A. Andersson, “Global energy scenariosmeeting stringent CO2 constraints-cost-effective fuel choices in the transportation sector,” Energy Policy, vol. 31, pp. 961-976, 2003.
    [2] K. W. J. Barnham, M. Mazzer, and B. Clive, “Resolving the energy crisis:nuclear or photovoltaics?,” Nat. Mater., vol. 5, pp. 161-164, 2006.
    [3] M. Yamaguchi, “III-V compound multi-junction solar cells:present and future,” Sol. Energy Mater. Sol. Cells, vol. 75, pp. 261-269, 2003.
    [4] B. Rech, T. Repmann, M. N. V. D. Donker, M. Berginski, T. Kilper, J. Hüpkes, S. Calnan, H. Stiebig, and S. Wieder, “Challenges in microcrystalline silicon based solar cell technology,” Thin Solid Films, vol. 511-512, pp. 548-555, 2006.
    [5] W. Chen, Y. Wu, J. Liu, Q. Chuanjiang, Y. Xudong, I. Ashraful, Y Cheng, and L. Han, “Hybrid interfacial layer leads to solid performance improvement of inverted perovskite solar cells,” Energy Environ. Sci., vol. 8, pp. 629-640, 2015.
    [6] S. H. Chang, C. C. Chen, L. C. Chen, C. L. Tien, H. M. Cheng, W. C. Huang, H. Y. Lin, S. H. Chen, and C. G. Wu, “Unraveling the multifunctional capabilities of PCBM thin films in inverted-type CH3NH3PbI3 based photovoltaics,” Sol. Energy Mater. Sol. Cells, vol. 169, pp. 40-46, 2017.
    [7] B. O'Regan and M. Gratzel, “A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2,” Nature, vol. 353, pp. 737-740, 1991.
    [8] D. Kearns and M. Calvin, “Photovoltaic effect and photoconductivity in laminated organic systems,” J. Chem. Phys., vol. 29, pp. 950-951, 1958.
    [9] C. W. Tang, “Two-layer organic photovoltaic cell,” Appl. Phys. Lett., vol. 48, pp. 183-185, 1986.
    [10] P. Peumans and S. R. Forrest, “Very-high-efficiency double-heterostructure copper phthalocyanine/C60 photovoltaic cells,” Appl. Phys. Lett., vol. 79, pp. 126-128, 2001.
    [11] J. Tsukamoto, H. Ohigashi, K. Matsumura1 and A. Takahashi1, ‘‘A schottky barrier type solar cell using polyacetylene,’’ Jpn. J. Appl. Phys., vol. 20, pp. 127-129, 1981.
    [12] N. S. Sariciftci, L. Smilowitz, A. J. Heeger, and F. Wudl, “Photoinduced electron transfer from conducting polymer to buckminsterfullerene,” Science, vol. 258, pp. 1474-1476, 1992.
    [13] G. Yu, C. Zhang, and A. J. Heeger, “Dual-function semiconducting polymer devices: light-emitting and photodetecting diodes,” Appl. Phys. Lett., vol. 64, pp. 1540-1542, 1994.
    [14] J. C. Hummelen, B. W. Knight, F. LePeq, F. Wudl, J. Yao, and C. L. Wilkins, “Preparation and characterization of fulleroid and methanofullerene derivatives,” J. Org. Chem., vol. 60, pp. 532-538, 1995.
    [15] G. Yu, J. Gao, J. C. Hummelen, F. Wudl, and A. J. Heeger, “Polymer photovoltaic cells:enhanced efficiencies via a network of internal donor-acceptor heterojunctions,” Science, vol. 270, pp. 1789-1791, 1995.
    [16] S. E. Shaheen, C. J. Brabec, N. S. Sariciftci, F. Padinger, T. Fromherz, and J. C. Hummelen, “2.5% efficient organic plastic solar cells,” Appl. Phys. Lett., vol. 78, pp. 841-843, 2001.
    [17] F. Padinger, R. S. Rittberger, and N. S. Sariciftci, “Effect of postproduction treatment on plastic solar cells,” Adv. Funct. Mater., vol. 13, pp. 85-88, 2003.
    [18] M. C. Scharber, D. Muhlbacher, M. Koppe, P. Denk, C. Waldauf, A. J. Heeger, and C. J. Brabec, “Design rules for donors in bulk-heterojunction solar cells-towards 10 % energy-conversion efficiency,” Adv. Mater., vol. 18, pp. 789-794, 2006.
    [19] L. J. A. Koster, V. D. Mihailetchi, and P. W. M. Blom, “Ultimate efficiency of polymer/fullerene bulk heterojunction solar cells,” Appl. Phys. Lett., vol. 88, pp. 093511-1-093511-3, 2006.
    [20] D. Weber, “CH3NH3PbX3, ein Pb(II)-system with cubic perovskite structure,” Z. Naturforsch B., vol. 33, pp. 1443-1445, 1978.
    [21] C. R. Kagan, D. B. Mitzi, and C. D. Dimitrakopoulos, “Organic-inorganic hybrid materials as semiconducting channels in thin-film field-effect transistors,” Science, vol. 270, pp. 945-947, 1999.
    [22] A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, “Organometal halide perovskite as visiblelightsensitizers for photovoltaic cells,” J. Am. Chem. Soc., vol. 131, pp. 6050-6051, 2009.
    [23] J. H. Noh, N. J. Jeon, Y. C. Choi, M. Nazeeruddin, M. Grätzel, and S. Seok, “Nanostructured TiO2/CH3NH3PbI3 heterojunction solar cells employing spiro-OMeTAD/co-complex as hole-transporting material,” J. Mater. Chem., vol. 1, pp. 11842-11847, 2013.
    [24] M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami, and H. J. Snaith, “Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites,” Science, vol. 338, pp. 643-647, 2014.
    [25] M. Liu, M. B. Johnston, and H. J. Snaith, “Efficient planar heterojunction perovskite solar cells by vapour deposition,” Nature, vol. 501, pp. 395-398, 2013.
    [26] H. Zhou, Q. Chen, G. Li, S. Luo, T.-B. Song, H.- S. Duan, Z. Hong, J. You, Y. Liu, and Y. Yang, “Interface engineering of highly efficient perovskite solar cells,” Science, vol. 345, pp. 542-546, 2014.
    第二章
    [1] P. Beckmann and A. Spizzichino, “The scattering of electromagnetic waves from rough surfaces,” Pergamon Press Oxford, London, New York, Paris, 1963.
    [2] H. Hertz, “The photovoltaic effect,” Ann. Phys., vol. 31, pp. 421-983,1887.
    [3] K. J. Less and E. G. Wilson, “Intrinsic photoconduction and photoemission in polyethylene,” J. Phys. C. Solid State Phys., vol. 6, pp. 3110-3120, 1973.
    [4] 傅聖文,「外應力對可撓式有機太陽能電池之影響」,國立成功大學電機工程研究所碩士論文,2009。
    [5] H. Hoppe and N. S. Sariciftci, “Organic solar cells:an overview,” J. Mater. Res., vol. 19, pp. 1924-1945, 2004.
    [6] P. K. Nayak, “Exciton binding energy in small organic conjugated molecule,” Synth. Met., vol. 174, pp. 42-45, 2013.
    [7] T. Stübinger and W. Brütting, “Exciton diffusion and optical interference in organic donor-acceptor photovoltaic cells,” J. Appl. Phys., vol. 90, pp. 3632-3641, 2001.
    [8] H. Zhou, Q. Chen, G. Li, S. Luo, T. B. Song, H. S. Duan, Z. Hong, J. You, Y. Liu, and Y. Yang, “Interface engineering of highly efficient perovskite solar cells,” Science, vol. 345, pp. 542-546, 2014.
    [9] P. Peumans and S. R. Forrest, “Very-high-efficiency double-heterostructure copper phthalocyanine / C60 photovoltaic cells,” Appl. Phys. Lett., vol. 79, pp. 126-128, 2001.
    [10] B. Qi and J. Wang, “Open-circuit voltage in organic solar cells,” J. Mater. Chem., vol. 22, pp. 24315-24325, 2012.
    [11] L. Zheng, D. Zhang, Y. Ma, Z. Lu, Z. Chen, S Wang, L Xiao and Q. Gonga, “Morphology control of the perovskite films for efficient solar cells,” Dalton Trans., vol. 44, pp. 10582-10593, 2015.
    [12] M. Lv, X. Dong, X. Fang, B. Lin, S. Zhang, J. Ding, and N. Yuan, “A promising alternative solvent of perovskite to induce rapid crystallization for high-efficiency photovoltaic devices,” RSC Adv., vol. 5, pp. 20521-20529, 2015.
    [13] K. F. Lin, S. H. Chang, K. H. Wang, H. M. Cheng, K. Y. Chiu, K. M. Lee, S. H. Chen, and C. G. Wu, “Unraveling the high performance of tri-iodide perovskite absorber based photovoltaics with a non-polar solvent washing treatment,” Sol. Energy Mater. Sol. Cells, vol. 141, pp. 309-314, 2015.
    [14] J. Seo, S. Park, Y. C. Kim, N. J. Jeon, J. H. Noh, S. C. Yoon, and S. I. Seok, “Benefits of very thin PCBM and LiF layer for solution-processed p-i-n perovskite solar cells,” Energy Environ. Sci., vol. 7, pp. 2642-2646, 2014.
    [15] L. Hu, J. Peng, W. Wang, Z. Xia, J. Yuan, J. Lu, X. Huang, W. Ma, H. Song, W. Chen, Y. B. Cheng, and J. Tang, “Sequential deposition of CH3NH3PbI3 on planar NiO film for efficient planar perovskite solar cells,” Am. Chem. Soc., vol. 1, pp. 547-553, 2014.
    [16] C. Bi, Y. Shao, Y. Yuan, Z. Xiao, C. Wang, Y. Gao, and J. Huang, “Understanding the formation and evolution of interdiffusion grown organolead halide perovskite thin films by thermal annealing,” J. Mater. Chem. A, vol. 2, pp. 18508-18514, 2014.
    [17] Z. Xiao, C. Bi, Y. Shao, Q. Dong, Q. Wang, Y. Yuan, C. Wang, Y. Gao and J. Huang, “Efficient high yield perovskite photovoltaic devices grown by interdiffusion of solution-processed precursor stacking layers,” Energy Environ. Sci., vol. 7, pp. 2619-2623, 2014.
    [18] L. K. Ono, S. Wang, Y. Kato, S. R. Raga, and Y. Qi, “Fabrication of semi-transparent perovskite films with centimeter-scale superior uniformity by the hybrid deposition method,” Energy Environ. Sci., vol. 7, pp. 3989-3993, 2014.
    [19] Q. Chen, H. Zhou, Z. Hong, S. Luo, H. S. Duan, H. H. Wang, Y. Liu, G. Li, and Y. Yang, “Planar heterojunction perovskite solar cells via vapor-assisted solution process,” J. Am. Chem. Soc., vol. 136, pp. 622-625, 2014.
    [20] 陳柏倫,「共軛高分子中非均向性電洞遷移率之研究」,國立交通大學物理研究所碩士論文,2004。
    [21] C. T. Lee and C. H. Lee, “Conversion efficiency improvementmechanisms of polymer solar cells by balance electron-hole mobility using blended P3HT:PCBM:pentacene active layer,”Org. Electron., vol. 14, pp. 2046-2050, 2013.
    [22] H. Y. Lee and H. L. Huang, “Investigation performance and mechanisms of inverted polymer solar cells by pentacene doped P3HT : PCBM,” Int. J. Photoenergy, vol. 2014, pp. 1-9, 2014.
    第三章
    [1] V. Shrotriya, G. Li, Y. Yao, T. Moriarty, K. Emery, and Y. Yang, “Accurate measurement and characterization of organic solar cells,” Adv. Funct. Mater., vol. 16, pp. 2016-2023, 2006.
    [2] 曾柏翔,「利用奈米柱二氧化鈦緻密層改善染料敏化太陽能電池電流密度之研究」,國立臺北科技大學工程研究所碩士論文,2009。
    [3] T. M. Schweizer, “Electrical characterization and investigation of the piezoresistive effect of PEDOT:PSS thin films,” Master Thesis, Georgia Institute of Technology, pp. 15-17, 2005.
    [4] Y. Liang, Z. Xu, J. Xia, S. T. Tsai, Y. Wu, G. Li, C. Ray, and L. Yu, “For the bright future-bulk heterojunction polymer solar cells with power conversion efficiency of 7.4%,” Adv. Energy. Mater., vol. 22, pp. E135-E138, 2010.
    [5] J. C. Hummelen, B. W. Knight, F. LePeq, F. Wudl, J. Yao, and C. L. Wilkins, “Preparation and characterization of fulleroid and methanofullerene derivatives,” J. Org. Chem., vol. 60, pp. 532-538, 1995.
    [6] V. V. Yanilk, V. P. Gubskaya,V. I. Morozov, N. V. Nastapova, V. V. Zverev,E. A. Berdnikov, and I. A. Nuretdinov, “Electrochemistry of fullerenes and their derivatives,” Acc. Chem. Res., vol. 31, pp. 593-601, 1998.
    [7] P. Peumans and S. R. Forrest, “Very-high-efficiency double-heterostructure copper phthalocyanine/C60 photovoltaic cells,” Appl. Phys. Lett., vol. 79, pp. 126-128, 2001.
    [8] A. Abate, T. Leijtens, S. Pathak, J. Teuscher, R. Avolio, M. E. Errico, J. Kirkpatrik, J. M. Ball, P. Docampo, I. M. Pherson, and H. J. Snaith, “Lithium salts as redox active p-type dopants for organic semiconductors and their impact in solid-state dye-sensitized solar cells,” Phys. Chem., vol. 15, pp. 2572-2579, 2013.
    [9] J. Krüger, R. Plass, L. Cevey, M. Piccirelli, and M. Grätzel, “High efficiency solid-state photovoltaic device due to inhibition of interface charge recombination,” Appl. Phys. Lett., vol. 79, pp. 2085-2087, 2002.
    [10] Y. Du, H. Cai, J. Ni, J. Li, H. Yu, X. Sun, Y. Wu, H. Wen and J. Zhang, “Air-processed, efficient CH3NH3PbI3−xClx perovskite solar cells with organic polymer PTB7 as a hole-transport layer,” RSC Adv., vol. 5, pp 66981-66987, 2015.
    [11] B. Ebenhoch, S. A. J. Thomson, K. Genevičius, G. Juška, and I.D.W. Samuel “Charge carrier mobility of the organic photovoltaic materials PTB7 and PC71BM and its influence on device performance,” Org. Electron., vol. 22, pp. 62-68, 2015.
    [12] N. J. Jeon, J. H. Noh, Y. C. Kim, W. S. Yang, S. Ryu, and S. I. Seok “Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells,” Nature Mater., vol. 13, pp. 897-903 , 2014.
    [13] L. C. Chen, C. C. Chen, J. C. Chen, and C. G. Wu, “Annealing effects on high-performance CH3NH3PbI3 perovskite solar cells prepared by solution-process,” Sol. Energy, vol. 122, pp. 1047-1051, 2015.
    [14] M. D. Irwin, D. B. Buchholz, A. W. Hains, and R. P. H. Chang, “P-type semiconducting nickel oxide as an efficiency-enhancing anode interfacial layer in polymer bulk-heterojunction solar cells,” Proc. Natl. Acad., vol. 105, pp. 2783-2787, 2008.
    [15] Y. Sun, G. C. Welch, W. L. Leong, C. J. Takacs, G. C. Bazan and A. J. Heeger, “Solution-processed small-molecule solar cells with 6.7% efficiency,” Nat. Mater., vol. 11, pp. 44-48, 2012.
    [16] T. Xiao , W. P. Cui , M. Cai , R. Liu , J. W. Anderegg , J. Shinar , and R. Shinar ,“Thin air-plasma-treated alkali fluoride layers for improved hole extraction in copper phthalocyanine/C70-based solar cells,” Nat. Mater., vol. 2, pp. 021006-1-021006-11, 2012.
    [17] A. Kanwata and J. Jang ,“Extremely stable organic photovoltaic incorporated with WOx doped PEDOT: PSS anode buffer layer,” J. Mater. Chem., vol. 2, pp. 901-907, 2014.
    [18] Y. M. Yang, W Chen, L. Dou, W. H. Chang, H. S. Duan, B. Bob, G. Li and Y Yang ,“High-performance multiple-donor bulk heterojunction solar cells,” Nat. Photonics, vol. 9, pp. 190-198, 2015.

    無法下載圖示 校內:2022-08-16公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE