| 研究生: |
周楷崴 Chou, Kai-Wei |
|---|---|
| 論文名稱: |
銦摻雜硫化鋅奈米材料之成長與可見光感測性質研究 Growth and Visible Light Photodetection of Indium doped Zinc Sulfide Nanomaterials |
| 指導教授: |
劉全璞
Liu, Chuan-Pu |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 52 |
| 中文關鍵詞: | 銦摻雜硫化鋅 、奈米材料製備 、可見光性質 |
| 外文關鍵詞: | Indium doped ZnS, Synthesis of Nanomaterials, Visible light photodetection |
| 相關次數: | 點閱:84 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究首先探討銦摻雜硫化鋅的製備,利用化學氣相沉積法(Chemical Vapor Deposition)成長出具有片狀及線帶狀的表面形貌,主要成長變數有兩種一為通入氣體之時機,另一個為前驅物粉末之比例。主要影響因素在高溫或低溫下為金屬觸媒聚集程度的不同造成以不同的成長機制形成不同性質的銦摻雜硫化鋅,利用掃描式電子顯微鏡(Scanning Electron Microscopy, SEM)及能量分散光譜儀(Energy Dispersive Spectrometer, EDX)觀察不同銦含量的片狀及線帶狀銦摻雜硫化鋅的表面形貌,並由X光繞射儀(X-Ray Diffraction, XRD)分析片狀形貌具有高溫相Wurtzire及線帶狀形貌具有主要為低溫相Zinc Blend,並且藉由(High Resolution Transmission Electron Microscope, HRTEM)分析片狀及線帶狀成長方向,最後進行光學分析,利用X光光電子能譜儀(X-ray Photoelectron Spectroscopy, XPS)再次確認銦摻雜硫化鋅成分及銦-鋅鍵結、鋅-硫鍵結,藉由μ-Raman可知晶格壓縮率會隨著銦摻雜的增加而增加,造成LO peak藍移現象,對片狀及線帶狀而言此關係會成一比例,藉由μ-PL可知銦摻雜相關之缺陷造成的波峰隨著銦含量的增加而增加,產生紅移的現象,並且分析材料內部缺陷具有本質缺陷及異質缺陷,並在照光時產生兩種機制之途徑貢獻至光電流,由於本質缺陷濃度較缺陷濃度低,故綠光照射下之電流響應值為最低,異質缺陷還可分成與銦摻雜相關的三個缺陷,分別為〖In〗_(r,585nm)^ 、〖In〗_(r,615nm)^ 及〖In〗_(r,660nm)^ ,藉由次波峰之強度及半高寬,可知缺陷濃度由高至低為〖In〗_(r,615nm)^ 、〖In〗_(r,660nm)^ 及〖In〗_(r,585nm)^ ,故光響應值高至低依序為橘光、紅光及綠光照射。
This study investigates growth and visible Light Photodetection of Indium doped ZnS synthesized by Chemical Vapor Deposition method under different timing of carry gas flow and different precursor ratio. Scanning electron microscopy images two type of indium doped Zinc Sulfide which morphology is sheet and wire/belt like at high/low temperature growth. Micro-Photoluminescence spectrum shows two type of defect which is intrinsic and extrinsic related to different response. The lowest response related to intrinsic elemental sulfur species on the surface. The highest response related to extrinsic primary indium related defect.
[1] X. Fang, Y. Bando, M. Liao, U. K. Gautam,C. Zhi, B. Dierre, B. Liu, T. Zhai, T. Sekiguchi, Y. Koide, and D. Golberg, Single-Crystalline ZnS Nanobelts as Ultraviolet-Light Sensors," Advanced Materials, vol. 21, p. 2034, 2009
[2] Y. G. Liu, P. Feng, X. Y. Xue, S. L. Shi, X. Q. Fu, C. Wang, Y. G. Wang, T. H. Wang, Room-temperature oxygen sensitivity of ZnS nanobelts," Applied Physics Letters, vol. 90, p. 42109, 2007
[3] X. Wang, Z. Xie, H. Huang, Z. Liu, D. Chen, and G. Shen, Gas sensors, thermistor and photodetector based on ZnS nanowires," Journal of Materials Chemistry, vol. 22, p. 6845, 2012
[4] M. Kazes, D. Y. Lewis, Y. Ebenstein, T. Mokari, and U. Banin, Lasing from semiconductor quantum rods in a cylindrical microcavity," Advanced Materials, vol. 14, 2002
[5] Y. Jiang, W. J. Zhang, J. S. Jie, X. M. Meng, J. A. Zapien, and S. T. Lee, Homoepitaxial growth and lasing properties of ZnS nanowire and nanoribbon arrays," Advanced Materials, vol. 18, p. 1527, 2006
[6] F. Lu, W. Cai, Y. Zhang, Y. Li, F. S. Sung, H. Heo, and S. O. Cho, Well-aligned zinc sulfide nanobelt arrays: Excellent field emitters," Applied Physics Letters, vol. 89, p. 231928, 2006
[7] K. Manzoor, S. R. Vadera, N. Kumar, and T. R. N. Kutty, Multicolor electroluminescent devices using doped ZnS nanocrystals," Applied Physics Letters, vol. 84, p. 12, 2003
[8] K. Kim , J. Y. Woo , S. Jeong , and C. S. Han, Photoenhancement of a quantum dot nanocomposite via UV annealing and its application to white LEDs," Advanced Materials, vol. 23, p. 911, 2011
[9] X. Fang, T. Zhai, U. K. Gautam, L. Li, L. Wu, and Y. Bando, D. Golberg, ZnS nanostructures: From synthesis to applications," Progress in Materials Science, vol. 56, p. 175, 2011
[10] S. B. Qadri, E. F. Skelton, D. Hsu, A. D. Dinsmore, J. Yang, H. F. Gray, and B. R. Ratna, Size-induced transition-temperature reduction in nanoparticles of ZnS," Physical Review B, vol. 3, p. 13, 1999
[11] F. Huang, H. Zhang, and J. F. Banfield, Two-stage crystal-growth kinetics observed during hydrothermal coarsening of nanocrystalline ZnS," Nano letters, vol. 3, p. 373, 2003
[12] Y. Liang, H. Xu, and S. K. Hark, Orientation and structure controllable epitaxial growth of ZnS nanowire arrays on GaAs substrates," Journals of physical chemistry C, vol. 114, p. 8343, 2010
[13] D. F. Moore, Y. Ding, and Z. L. Wang, Crystal orientation-ordered ZnS nanowire bundles," Journal of American Chemical Society, vol. 126, p. 14372, 2004
[14] G. Shen, Y. Bando, D. Golberg, and C. Zhou, Heteroepitaxial growth of orientation-ordered ZnS nanowire arrays," Journals of Physical Chemistry C, vol. 112, p. 12299, 2008
[15] F. Lu, W. Cai, Y. Zhang, Y. Li and F. Sun, Fabrication and field-emission performance of zinc sulfide nanobelt arrays," Journals of physical Chemistry C, vol. 111, p. 13385, 2007
[16] L. W. Yin, Y. Bando, J. H. Zhan, M. S. Li, and D. Golberg, Self-assembled highly faceted wurtzite-type ZnS single-crystalline nanotubes with hexagonal cross-sections," Advanced Materials, vol. 17, p. 1972, 2005
[17] X. Wang, P. Gao, J. Li, C. J. Summers, and Z. L. Wang, Rectangular porous ZnO-ZnS nanotubes and ZnS nanotubes," Advanced Materials, vol. 14, p. 23, 2002
[18] U. K. Gautam, X. Fang, Y. Bando, J. Zhan, and D. Golberg, Synthesis, structure, and multiply enhanced field emission properties of branched ZnS nanotube in nanowire coreshell heterostructures," ACS Nano, vol. 2, p. 1015, 2008
[19] D. Li, Fast and mass synthesis of ZnS nanosheets via an ultra-strong surface interaction," CrystEngComm, vol. 15, p. 10631, 2013
[20] C. C. Klick and J. H. Schulman," Solid State Physics, vol. 5, 1957,
[21] P. Prathap, N. Revathi, Y. P. V. Subbaiah, K. T. Ramakrishna Reddy, and R. W. Miles, Preparation and characterization of transparent conducting ZnS:Al films," Solid State Sciences, vol. 11, p. 224, 2009
[22] H. Koelmans, Association and dissociation of centers in luminescent ZnS-In," Journal of physics and chemistry of solids, vol. 17, p. 69, 1960
[23] J. H. Chen, W. J. Li, and S. Y. Cheng, High-performance ZnS: In film and In doping effect on its structural, optical and electrical properties," ECS Solid State Letters, vol. 2, p. 120, 2013
[24] C. Jinhuo and W. Li, Significant improvement of ZnS film electrical and optical performance by indium incorporation," Journal of Semiconductors, vol. 35, p. 9, 2014
[25] B. Sotillo, P. Ferna´ndez and J. Piqueras, Light guiding and optical resonances in ZnS microstructures doped with Ga or In," Journal of Materials Chemistry C, vol. 3, p. 10981, 2015
[26] H. Hu, W. Zhang, Synthesis and properties of transition metals and rare-earth metals doped ZnS nanoparticles," Optical Materials, vol. 28, p. 536, 2006
[27] N. A. Vlasenko, P. F. Oleksenko, M. A. Mukhlyo, Z. L. Denisova, and L. I. Veligura, ZnS:Cr and ZnSe:Cr thin-film waveguide structures as electrically pumped laser media with an impact excitation mechanism," Annalen der physik, vol. 525, p. 889, 2013
[28] X. Wang, Z. Xie, H. Huang, Z. Liu, D. Chen, and G. Shen, Gas sensors, thermistor and photodetector based on ZnS nanowires," Journal of Materials Chemistry, vol. 22, p. 6845, 2012
[29] C. Zhou, Z. Wu, Y. Guo, Y. Li, H. Cao, X. Zheng, and X. Dou, Ultrasensitive, real-time and discriminative detection of improvised explosives by chemiresistive thin-film sensory array of Mn2+ tailored hierarchical ZnS," Scientific Reports, vol. 6, p. 25588, 2016
[30] P. Prathap, N. Revathi, Y. P. V. Subbaiah, K. T. R. Reddy, and R. W. Miles, Preparation and characterization of transparent conducting ZnS:Al films," Journal of Materials Chemistry, vol. 11, p. 224, 2009
[31] K. L. Choy, Chemical vapour deposition of coatings," Progress in Materials Science, vol. 48, p. 57, 2003
[32] X. Huang, Z. J. Wang, G. Weinberg, X. M. Meng, and M. G. Willinger, In-situ scanning electron microscopy observation of growth kinetics and catalyst splitting in vapor–liquid–solid growth of nanowires," Advanced Functional Materials, vol. 25, p. 5979, 2015
[33] P. Yang, and C. M. Lieber, Nanostructured high-temperature superconductors: creation of strong-pinning columnar defects in nanorod/superconductor composites," Journal of Materials Research, vol. 12, p. 11, 1997
[34] Y. Zhang, F. Lu, Z. Wang, H. Wang, M. Kong, X. Zhu, L. Zhang, ZnS nanoparticle-assisted synthesis and optical properties of ZnS Nanotowers," Crystal Growth & Design ,vol. 7, p. 1459, 2007
[35] J. Lu, X. Zeng , H. Liu, W. Zhang, Y. Zhang, J. Cui, and C. Hu, Effects of Au catalysts for synthesis of ZnS microstructures on the sapphire substrate," Materials Letters, vol. 93, p. 337, 2013
[36] B. Sotillo, Y. Ortega, P. Ferna´ndez, and J. Piqueras, Influence of indium doping on the morphology of ZnS nanostructures grown by a vapor–solid method, "CrystEngComm, vol. 15, p. 7080, 2013
[37] M. Lin, T. Sudhiranjan, C. Boothroyd, K. P. Loh, Influence of Au catalyst on the growth of ZnS nanowires, Chemical," Physics Letters vol. 400, p. 175, 2004
[38] C. Borchers1, D. Stichtenoth, S. Muller, D. Schwen, and C. Ronning, Catalyst–nanostructure interaction and growth of ZnS nanobelts," Nanotechnology vol. 17, p. 1067, 2006
[39] S. B. Qadri, E. F. Skelton, D. Hsu, A. D. Dinsmore, J. Yang, H. F. Gray, and B. R. Ratna, Size-induced transition-temperature reduction in nanoparticles of ZnS," Physical Review B Condensed Matter And Materials Physics, vol. 3, p. 13, 1991
[40] S. Liu, J. Ye, Y. Cao, Q. Shen, Z. Liu, L. Qi, and X. Guo, Tunable hybrid photodetectors with superhigh responsivity," Small, vol. 5, p. 2371, 2009
[41] Y. Hao, G. Meng, Z. L. Wang, H. Chang, L. Zhang, Periodically twinned nanowires and polytypic nanobelts of ZnS: the role of mass diffusion in vapor−liquid−solid growth," Nano Letters, vol. 6, p. 1650, 2006
[42] J. Ready," Fundamentals of Photonics, p219
[43] X. Fang, Y. Bando, M. Liao, T. Zhai, U. K. Gautam, L. Li, Y. Koide, D. Golberg, An efficient way to assemble ZnS nanobelts as ultraviolet-light sensors with enhanced photocurrent and stability," Advanced Functional Materials, vol. 20, p. 500, 2010
[44] K. Sooklal, B. S. Cullum, S. M. Angel, and C. J. Murphy, Photophysical properties of ZnS nanoclusters with spatially localized Mn2+," Journal of Physical Chemistry, vol. 100, p. 4551, 1996
[45] D. Q. Trung, N.T. Tuan, H. V. Chung, P.H. Duong, and P.T. Huy, On the origin of green emission in zinc sulfide nanowires prepared by a thermal evaporation method, "Journal of Luminescence, vol. 153, p. 321, 2014
[46] D. Denzler, M. Olschewski, K. Sattlera, Luminescence studies of localized gap states in colloidal ZnS nanocrystals," Journal of Applied Physics, vol. 84, p. 5, 1998
[47] Y. C. Zhu, Y. Bando, D. F. Xue, Spontaneous growth and luminescence of zinc sulfide nanobelts," Applied Physics Letters, vol. 82, p. 1769, 2003
[48] H. Zhang, S. Zhang, M. Zuo, G. Li, and J. Hou, Synthesis of ZnS nanowires and assemblies by carbothermal chemical vapor deposition and their photoluminescence, "European Journal of Inorganic Chemistry, vol. 47, 2005
[49] S. Oda, and H. Kumimoto, A new emission Band in self-activated ZnS," Journal of Luminescence, vol.18, p. 829, 1979
[50] C. Ye, X. Fang, G. Li, and L. Zhang, Origin of the green photoluminescence from zinc sulfide nanobelts," Applied Physics Letters, vol. 85, p. 3035, 2004
[51] G. Shen, Y. Bando, and D. Golberg, Self-assembled three-dimensional structures of single-crystalline ZnS submicrotubes formed by coalescence of ZnS nanowires," Applied Physics Letters, vol. 88, p. 123107, 2006
[52] E. F. Apple and F. E. Williams, Associated donor-acceptor luminescent centers in zinc sulfide phosphors," Journal of the electrochemical society, vol. 106, p. 3, 1959
[53] T. T. Zhuang, P. Yu, F. J. Fan, L. Wu, X. J. Liu, S. H. Yu, Controlled synthesis of kinked ultrathin ZnS nanorods/nanowires triggered by chloride ions: a case study, "small, vol. 10, p. 1394, 2014
[54] X. Zhou, X. Zeng, X. Yen, W. Xia, Y. Zhou, X. Shen, Shape- and phase- controlled ZnS nanostructures and their optical properties," Materials Research Bulletin, vol. 59, p. 25, 2014
[55] J. Wang, M. Isshiki, Wide-Bandgap II-VI semiconductors:growth and porperties, "Springer Handbook of Electronic and Photonic Materials, Part. B, Chap.16, p. 2
[56] S. Hamad, S. Cristol, C. Richard, and A. Catlow, Surface structures and crystal morphology of ZnS: computational study," Journals of Physical Chemistry B, vol. 106, p. 11002, 2002
[57] Z. P. Li, Solvothermal synthesis of ZnS nanorods and their pressure modulated photoluminescence spectra," Journal of Physics: Condensed Matter, vol. 19, p. 425227, 2007
[58] O. brafma, and S. S. Mitra, Raman effect in wurtzite- and zinc-blende-type ZnS single crystals," Physics Review, vol. 171, p. 3, 1968
[59] R. N. Bhargavaa, D. Gallaghera, and T. Welkerb, Doped nanocrystals of semiconductors - a new class of luminescent materials," Journal of Luminescence, vol. 60, p. 275, 1994
[60] J. Zhou, H. Goto, N. Sawaki, and I. Akasaki, Photoluminescence decay properties of indium doped ZnS, Japanese Journal of Applied Physics, vol. 25, p. 1663-1667, 1986
[61] K. B. Lin, Y. H. Su, Photoluminescence of Cu:ZnS, Au:ZnS, and Au:ZnS nanoparticles applied in Bio-LED," Applied Physics B, vol. 113, p. 351, 2013
校內:立即公開