簡易檢索 / 詳目顯示

研究生: 巫俊憲
Wu, Jiun-Shian
論文名稱: 使用位移量測研究含裂縫平板的三維效應
Measurement of displacements in cracked plates with 3D effect
指導教授: 朱聖浩
Ju, Sheng-Hau
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 96
中文關鍵詞: 數位影像相關法位移有限元素應力柏松比Mode-IMode-II
外文關鍵詞: digital-image correlation method, displacement, finite element method, Mode-I crack, Mode-II crack, stress, Poisson’s ratio
相關次數: 點閱:104下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文之主要目的是利用影像相關的實驗,取得試體受力前和受力後的變位影像資料,以探討裂縫平板的三維效應,並且與有限元素分析法所模擬的位移結果做比較。其中本實驗利用四種不同厚度的試體,比較不同的實驗結果。由實驗結果顯示,較薄厚度的試體,其位移分佈曲線是呈現較平滑的趨勢。此外,本研究還利用有限元素分析法模擬,取得從中間層至表面層的應力變化曲線,並利用不同柏松比的結果進行比較。其分析結果顯示,從中間層至表面層,其裂縫尖端的應力值逐漸減小,而當柏松比的值越大,其應力值減少得更多。在實驗中,其裂縫狀態以Mode I為主要研究的形式。另外本文也展示了Mode II的實驗結果。

    This thesis uses the digital-image correlation experiment to find the displacement filed, which is used to discuss the three-dimensional (3-D) effect of crack problems. In the experiment, specimens with four different thicknesses are used to compare the experimental results due to the plate thickness effect, and finite element method (FEM) results are then used to compare with the experimental results. The comparisons indicated that the displacement contour is presented a smoother situation for the thinner specimens. Additionally, the thesis also uses the FEM to analyze the stress behavior between the mid-plane and edge-plane, and the comparisons with different Poisson’s ratios are presented in this study. For the mode-I crack behavior, the comparisons indicate that the stress is gradually reduced as the location approaches to the plate surface, and the stress decreases as the Poisson’s ratio increases. In this experiment, the crack is set to the Mode-I type, but this thesis also displays the Mode-II results of the experiment.

    Contents 摘要 i Abstract ii 誌謝 iii Contents iv List of Figures vii List of Tables x Chapter 1.Introduction 1 1.1 Background and purpose 1 1.2 Literature review 3 1.2.1 Literature for the 3D stress field near the crack front 3 1.2.2 Literature for the experiment for digital-image method 7 1.2.3 Literature for the 3D displacement field near the crack front 11 Chapter 2.The Non-contact Measurement Experiment System 12 2.1 Introduction 12 2.2 Instrument setting 12 2.3 Specimens produced and spray painting 19 2.4 Measurement step 26 2.5 Summary 35 Chapter 3. Numerical method 36 3.1 Programs in the finite element analysis 36 3.2 The model of numerical method 36 3.2.1 Generation of the finite element model 36 3.2.2 The properties of model 37 3.2.3 The boundary condition and the stress of setting 37 3.2.4 The mesh of model 37 3.2.5 Thickness of the layered 39 3.3 Summery 40 Chapter 4. Theoretical background 41 4.1 Theoretical background of Fracture mechanics 41 4.1.1 The theory of elasticity 41 4.1.2 Stress function of plane problems 43 4.1.3 General solution of plane stress and plane strain problems44 4.1.4 Mode-III problems 48 4.2 Finite element method 52 4.3 Summery 56 Chapter 5. Results of experiments and finite element analyses 57 5.1 Introduction 57 5.2 Experimental results and FEM results 58 5.2.1 Experimental results 58 5.2.2 Finite element results 60 5.2.3 Three-dimensional stress 61 5.4 Discussions and conclusions 63 Chapter 6.Conclusions and Recommendations 88 6.1 Conclusion 88 6.2 Recommendations for further research 90 References 92

    Reference
    1. Nakamura T, Parks DM (1988), “Antisymmetrical 3-D stress field near the crack front of a thin elastic plate”, International Journal of Solids and Structures, 25(12) pp.1411-1426.
    2. Nakamura T (1991), “Three-Dimensional Stress Fields of Elastic Interface Cracks”, Journal of Applied Mechanics, 58(4) pp.939-946.
    3. Levy N, Marcal PV, Rice JR (1971), “Progress in three-dimensional elastic-plastic stress analysis for fracture machanics”, Nuclear Engineering and Design, 17(1) pp.64-75.
    4. Moghaddam AS, Ghajar R, Alfano M (2011), “Finite element evaluation of stress intensity factors in curved non-planar cracks in FGMs”, Mechanics Research Communication, 38 pp.17-23
    5. Prukvilailert M, Koguchi H (2005), “Stress singularity analysis around the singular point on the stress singularity line in three-dimensional joints”, International Journal of Solids and Structures, 42(11-12) pp.3059–3074.
    6. Matos PFP de, Nowell D (2008), “The influence of the Poisson’s ratio and corner point singularities in three-dimensional plasticity-induced fatigue crack closure: A numerical study”, International Journal of Fatigue, 30(10-11) pp.1930-1943.
    7. Leung AYT., Su RKL (1995), “A numerical study of singular stress field of 3D cracks”, Finite Elements in Analysis and Design, 18 pp.389-401.
    8. Wang Q, Noda NA, Honda MA, Chen M (2001) “Variation of stress intensity factor along the front of a 3D rectangular crack by using a singular integral equation method”, International Journal of Fracture, 108(2) pp.119-131.
    9. Weaver J (1977), “Three-dimensional crack analysis”, International Journal of Solids and Structures, 13(4) pp.321-330.
    10. Zhu WX (1990), “Singular Stress Field of Three-Dimensional Crack”, Engineering Fracture Mechnnics, 36(2) pp.239-244.
    11. Sih GC (1971), “A Review of the Three-Dimensional Stress Problem for a Cracked Plate”, International Journal of Fracture Mechanics, 7(1) pp.39-61.
    12. Cruse TA, Vanburen W (1971), “Three-Dimensional Elastic Stress Analysis of a Fracture Specimen with an Edge Crack”, International Journal of Fracture Mechanics, 7(1)
    13. Lin XB, Smith RA (1999), “Finite element modelling of fatigue crack growth of surface cracked plates Part I: The numerical technique”, Engineering Fracture Mechanics, 63(5) pp.503-522.
    14. Cruse TA, (1969), “Numerical solutions in three dimensional elastostatics”, International Journal of Solids and Structures, 5(12) pp.1259-1274.
    15. Rosakis AJ, Ravi-Chanders K (1986), “On Crack-Tip Stress State: An Experimental Evaluation of Three-Dimensional Effects”, International Journal of Solids and Structures, 22(2) pp.121-134.
    16. Picu CR, Gupta V (1997), “Three-dimensional stress singularities at the tip of a grain triple junction line intersecting the free surface”, Journal of the Mechanics and Physics of Solids, 45(9) pp.1495-1520.
    17. Stern M, Becker EB, Dunham RS (1976), “A contour integral computation of mixed-mode stress intensity factors”, International Journal of Fracture, 12(3) pp.359-368.
    18. Swedlow JL (1971), “Elasto-Plastic Cracked Plates in Plane Strain”, International Journal of Fracture Mechanics, 5(1) pp.33-44.
    19. Barsoum RS, Chen TK (1991), “Three-dimensional surface singularity of an interface crack”, International Journal of Fracture, 50(3) pp.221-237.
    20. Nakamura T, Parks DM (1990), “Three-Dimensional Crack Front Fields in a Thin Ductile Plate”, 38(6) pp.787-812.
    21. Folias ES, Wang JJ (1990), “On the three-dimensional stress field around a circular hole in a plate of arbitrary thickness”, Computational Mechanics, 6(5-6) pp.379-391.
    22. Heyder M, Kolk K, Kuhn G (2005), “Numerical and experimental investigations of the influence of corner singularities on 3D fatigue crack propagation”, Engineering Fracture Mechanics, 72(13) pp.2095-2015.
    23. Lyons JS, Liu J, Sutton MA (1996), “High-temperature Deformation Measurements Using Digital-image Correlation”, Experimental Mechanics, 36(1) pp.64-70.
    24. Vendroux G, Knauss WG (1998), “Submicron Deformation Field Measurements: Part 2. Improved Digital Image Correlation”, Experimental Mechanics, 38(2) pp.86-92.
    25. Mcneill SR, Peters WH, Sutton MA (1987), “Estimation of Stress Intensity Factor by Digital Image Correlation”, Engineering Fracture Mechanics, 28(1) pp. 101-l 12.
    26. Abanto-Bueno J, Lambros J (2002), “Investigation of crack growth in functionally graded materials using digital image correlation”, Engineering Fracture Mechanics, 69(14-16) pp.1695–1711.
    27. Ha K (2000), “A Parametric Study of Displacement Measurements Using Digital Image Correlation Method”, International Journal, 14(5) pp. 518-529.
    28. Kahn-Jetter ZL, Chu TC, “Three-dimensional Displacement Measurements Using Digital Image Correlation and Photogrammic Analysis”, Experimental Mechanics, 30(1) pp. 10-16.
    29. Sutton MA, Cheng M, Peters WH, Chao YJ, McNeill SR (1986), “Application of an optimized digital correlation method to planar deformation analysis”, Image and Vision Computing, 4(3) pp. 143–150.
    30. Mahinfalah M, Zackery L (1995), “ Photoelastic Determination of Mixed Mode Stress Intensity Factors for Sharp Reentrant Corners”, Engineering Fracture Mechanics, 52(4) pp. 639-645.
    31. Yoneyama S, Morimoto Y, Takashi M (2006), “Automatic Evaluation of Mixed-mode Stress Intensity Factors Utilizing Digital Image Correlation”, Department of Mechanical Engineering, 42(1) pp. 21-29.
    32. Peters WH, Ranson WF (1982), “Digital imaging techniques in experimental stress analysis”, Optical Engineering, 21 (3) pp. 427-431.
    33. Sutton MA, Walters WJ, Peters WH, Ranson WF,McNeil1 SR (1983), “Determination of displacements using an improved digital correlation method” ,Image and Vision Computing, 1(3) pp. 133–139.
    34. Bruck HA, McNeill SR, Sutton MA, Peters WH (1989), “Digital image correlation using Newton-Raphson method of partial differential correction”, Experimental Mechanics September, 29(3) pp. 261-267.
    35. Zhang ZF, Kang YL, Wang HW, Qin QH, Qiu Y, Li XQ (2006), “A novel coarse-fine search scheme for digital image correlation method”, Measurement, 39(8) pp. 710–718.
    36. Quan C, Tay CJ, Sun W, He X (2008), “Determination of three-dimensional displacement using two-dimensional digital image correlation”, Department of Mechanical Engineering, 47(4) pp. 583-593.
    37. Hutchinsok JW (1968), “Plastic Stress and Strain Fields at a Crack tip”, Journal of the Mechanics and Physics of Solids,16(5) pp. 337–342.
    38. Ayres DJ (1970), “A Numerical Procedure for Calculating Stress and Deformation near a Slit in a Three-Dimensional Elastic-Plastic Solid”, Engineering Fracture Mechanics, 2(2) pp. 87–104.
    39. Zhu XK, Liu GT, Chao YJ (2001), “Three-dimensional stress and displacement fields near an elliptical crack front”, International Journal of Fracture, 109(4) pp. 383–401.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE