簡易檢索 / 詳目顯示

研究生: 徐兆力
Hsu, Chao-Li
論文名稱: 浮式風機平台在考慮波浪作用與準靜態錨鏈系統影響下之動態響應-以OC3-Hywind風機為探討對象
The Dynamic Responses of the Wind Float Platform in Waves and Quasi-Static Mooring System Effect-A Case Study of OC3-Hywind Wind Turbine
指導教授: 林宇銜
Lin, Yu-Hsien
學位類別: 碩士
Master
系所名稱: 工學院 - 系統及船舶機電工程學系
Department of Systems and Naval Mechatronic Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 76
中文關鍵詞: OC3-Hyind反應振幅因子模組計算流程風機浮體平台錨鏈系統
外文關鍵詞: OC3-Hywind, RAO, Modular Process, Mooring System
相關次數: 點閱:94下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以NEMOH與WEC-SIM電腦程式為基礎探討OC3-Hywind風機在波浪作用下之動態響應模擬,其中邊界元素法是依據線性繞射理論(Linear Diffraction Theory)求解繞射/輻射問題(Diffraction / Radiation Problem),並考慮Cummins Time-Domain Equation作為建立時程領域求解器。
    為了比較離岸風機作業海域之波浪環境與水深影響,在此利用反應振幅因子(Response Amplitude Operator, 簡稱RAO)來估算出在不同波浪環境下風機的運動反應。由於RAO的峰值處即代表風機與波浪的共振週期,且直接影響風力發電機的穩定度與安全性。因此藉由探討共振情況下的受力情形,即可知道風機運動所產生之錨鏈力對於風機之影響,結果可提供設計風機錨鏈系統之參考依據。而為了避免風機產生過大的運動量,錨鏈系統是以準靜態模式(Quasci-Static State)來估算繫纜對於風機動態的限制作用,最後比較各類程式對於OC3-Hywind風機在極端條件下(如暴風)之模擬結果。
    在本研究中,模組化設計系統由於具有實驗設計(Design of Experiment)之優點,在結合不同尺寸、外型、搭載之錨鏈系統後,將可探討在不同海況條件下,浮式風機在單一自由度或多個自由度耦合下之運動反應。

    This study studies the real-time motion responses of OC3-Hywind spar floating platform in waves based on the modular design system, composed of NEMOH and WEC-SIM. In the time-domain simulation, both of the radiation and the diffraction method are used to obtain the hydrodynamic forces from frequency-domain Boundary Element Method (BEM) solver. In order to simulate the system dynamics of OC3-Hywind spar floating platform, the Cummins time-domain equation is adopted by solving the governing equations in 3 Degrees-of-Freedom (DOF) motions, including surge, heave, pitch. Besides, an indicator, Response Amplitude Operator (RAO), is considered to realize the resonance period of OC3-Hywind spar floating platform by performing regular wave simulations at various frequencies. Since the RAO peak corresponds to the resonance period of OC3-Hywind spar floating platform, it would be considered as a predominant parameter relating to the designs of safety and stability, and it can be used to estimate the floating platform’s response to waves in case of the mooring system. Subsequently, the results present that the quasi-static mooring system is applicable to the estimation of mooring forces as well as the restriction of the floating platform in motion responses. By comparing our model results with other published results of OC3-Hywind spar floating platform, it is verified that the calculation of motion responses is reliable. Eventually, this study would provide a modular calculation process and help realize hydrodynamic characteristic of wind float’s platform in engineering practice.

    摘要 I Extended Abstract II 致謝 XV 目錄 XVI 表目錄 XVIII 圖目錄 XIX 符號 XXIII 第一章 緒論 1 1-1 研究動機與目的 1 1-2 文獻回顧 3 1-3 本文架構 7 第二章 離岸風力發電機介紹與數值方法介紹 9 2-1 離岸風力發電機介紹 9 2-1-1 離岸風力發電機發展近況 9 2-1-2 不同形式之離岸風力發電機配置與特性 13 2-2 線性勢流理論(Linear Potential Theory)與邊界元素法(Boundary Element Method) 18 2-3 康明斯時域方程式(Cummins Time-Domain Equation) 25 2-4 程式限制與模組介紹 27 第三章 直立圓柱模擬與驗證 37 3-1 圓柱外型與設置 37 3-2 直立圓柱流動力係數驗證與分析 38 第四章 波浪模擬環境與浮動式風機平台設定 43 4-1 OC3-Hywind浮式風機平台尺寸與外型介紹 43 4-2 網格外型與收斂性分析 45 4-3 錨鏈系統設置 51 4-3-1 錨鏈系統對於風機反應振幅因子(RAO)之作用 54 4-3-2 峰值處風機受力情形 57 4-3-3 峰值處風機運動情形 62 第五章 模擬結果與分析 65 5-1 各程式對於OC3-Hywind風機動態模擬結果比較 65 5-2 各模擬程式之差異性比較 67 5-3 模擬結果與討論 70 第六章 結論與未來展望 71 文獻參考 73

    [1] Bureau of Energy, Ministry of Economic Affairs. Available:http://web3.moeaboe.gov.tw/ecw/business/content/ContentLink.aspx?menu_id=378
    [2] E. S. Politis, J. Prospathopoulos, D. Cabezon, K. S. Hansen, P. Chaviaropoulos, and R. J. Barthelmie, "Modeling wake effects in large wind farms in complex terrain: the problem, the methods and the issues," Wind Energy, vol. 15, pp. 161-182, 2012.
    [3] W. Wwea, "A. World Wind Energy Report 2008," URL www. wwindea. org, 2009.
    [4] G. W. E. Council, "Annual market update 2013: Global Wind Report," GWEC, Brussels, 2014.
    [5] J. M. Jonkman and M. L. Buhl Jr, "FAST user’s guide," National Renewable Energy Laboratory, Golden, CO, Technical Report No. NREL/EL-500-38230, 2005.
    [6] M. Karimirad, "Stochastic dynamic response analysis of spar-type wind turbines with catenary or taut mooring systems," 2011.
    [7] M. T. Andersen, D. Hindhede, and J. Lauridsen, "Influence of Model Simplifications Excitation Force in Surge for a Floating Foundation for Offshore Wind Turbines," Energies, vol. 8, pp. 3212-3224, 2015.
    [8] J. M. Jonkman and P. D. Sclavounos, "Development of fully coupled aeroelastic and hydrodynamic models for offshore wind turbines," National Renewable Energy Lab., Golden, CO, Technical Report No. NREL/CP-500-39066, 2006.
    [9] M. Lawson, Y.-H. Yu, K. Ruehl, and C. Michelen, "Development and Demonstration of The WEC-Sim Wave Energy Converter Simulation Tool," 2014.
    [10] M. Lawson, B. B. Garzon, F. Wendt, Y.-H. Yu, and C. Michelen, "COER hydrodynamic modeling competition: Modeling the dynamic response of a floating body using the WEC-SIM and FAST simulation tools," in ASME 2015 34th International Conference on Ocean, Offshore and Arctic Engineering, 2015, pp. V009T09A005-V009T09A005.
    [11] C. P. Butterfield, W. Musial, J. Jonkman, P. Sclavounos, and L. Wayman, Engineering challenges for floating offshore wind turbines: Citeseer, 2007.
    [12] Z.-Z. Chen, N. J. Tarp-Johansen, and J. J. Jensen, "Mechanical characteristics of some deepwater floater designs for offshore wind turbines," Wind Engineering, vol. 30, pp. 417-430, 2006.
    [13] D. Matha, "Model Development and Loads Analysis of an Offshore Wind Turbine on a Tension Leg Platform with a Comparison to Other Floating Turbine Concepts: April 2009," National Renewable Energy Laboratory (NREL), Golden, CO.2010.
    [14] M. Karimirad and T. Moan, "Wave-and wind-induced dynamic response of a spar-type offshore wind turbine," Journal of waterway, port, coastal, and ocean engineering, vol. 138, pp. 9-20, 2011.
    [15] O. Aamo and T. Fossen, "Finite element modelling of moored vessels," Mathematical and Computer Modelling of Dynamical Systems, vol. 7, pp. 47-75, 2001.
    [16] 陳韻茹, "船體繫泊系統之動態模擬," 成功大學系統及船舶機電工程學系學位論文, pp. 1-196, 2006.
    [17] 4C offshore. Available: http://www.4coffshore.com/
    [18] W. E. Heronemus, Pollution-free Energy from the Offshore Winds: Marine Technology Society, 1972.
    [19] J. M. Jonkman, Dynamics modeling and loads analysis of an offshore floating wind turbine: ProQuest, 2007.
    [20] RENEWABLE ENERGY TECHNOLOGIES:COST ANALYSIS SERIES Available:https://www.irena.org/DocumentDownloads/Publications/RE_Technologies_Cost_Analysis-WIND_POWER.pdf
    [21] G. Delhommeau, "Seakeeping codes aquadyn and aquaplus," 19th WEGEMT School Numerical Simulation of Hydrodynamics: Ships and Offshore Structures, 1993.
    [22] J. L. Hess and A. Smith, "Calculation of non-lifting potential flow about arbitrary three-dimensional bodies," DTIC Document1962.
    [23] A. Babarit, "NEMOH, Laboratory for Research in Hydrodynamics," Energy, Environment, and Atmosphere, http://lheea. ec-nantes. fr/doku. php/emo/nemoh/start, 2014.
    [24] W. Cummins, "The impulse response function and ship motions," DTIC Document1962.
    [25] G. DNV, "Environmental conditions and environmental loads," Recommend Practice DNV-RP-C205, 2014.
    [26] "WEC-SIM Website". Available: http://wec-sim.github.io/WEC-Sim/
    [27] D. D. Bhatta, "Computations of hydrodynamic coefficients, displacement-amplitude ratios and forces for a floating cylinder due to wave diffraction and radiation," International Journal of Non-Linear Mechanics, vol. 46, pp. 1027-1041, 2011.
    [28] J. Jonkman and W. Musial, "Offshore code comparison collaboration (OC3) for IEA task 23 offshore wind technology and deployment," Contract, vol. 303, pp. 275-3000, 2010.
    [29] G. Ramachandran, A. Robertson, J. Jonkman, and M. Masciola, "Investigation of response amplitude operators for floating offshore wind turbines," in The Twenty-third International Offshore and Polar Engineering Conference, 2013.
    [30] A. Cordle and J. Jonkman, "State of the art in floating wind turbine design tools," in The Twenty-first International Offshore and Polar Engineering Conference, 2011.
    [31] J. M. Jonkman, Definition of the Floating System for Phase IV of OC3: Citeseer, 2010.

    無法下載圖示 校內:2018-07-15公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE