| 研究生: |
謝明憲 Hsieh, Ming-Hsien |
|---|---|
| 論文名稱: |
鈣鈦礦型LaNi1-xMgxO3觸媒應用於CH4/CO2重組反應之研究 CH4 reforming of CO2 over perovskite type LaNi1-xMgxO3 catalyst |
| 指導教授: |
黃啟祥
Hwang, Chii-Shyang |
| 共同指導教授: |
吉村昌弘
Masahiro Yoshimura |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2009 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 130 |
| 中文關鍵詞: | 觸媒 、LaNiO3 、CH4 、CO2 、重組反應 |
| 外文關鍵詞: | Catalytic, LaNiO3, CH4, CO2, dry reforming |
| 相關次數: | 點閱:64 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
二氧化碳的甲烷重組反應可將同為溫室氣體之甲烷與二氧化碳轉化成合成氣CO+H2,此氣體可用於生產甲醇或更高經濟價值的有機化合物,為一項值得研發的技術。為提高應用於此反應之LaNiO3觸媒的反應活性、穩定性及抗積碳能力,本研究以檸檬酸凝膠法製備LaNiO3觸媒,並藉Mg及Ce的添加及α-Al2O3擔體的利用來製備改質之觸媒,並比較LaNiO3、LaNi0.94Mg0.06O3、La0.96Ce0.04Ni0.94Mg0.06O3與5wt.% LaNi0.94Mg0.06O3 / α-Al2O3四種觸媒之諸特性。
以檸檬酸凝膠法製備之前驅體粉末約在600°C開始形成LaNiO3相,於350°C持溫0.5 h後再以700°C鍛燒2 h所得之LaNiO3觸媒粉末,其比表面積為9.06 m2/g,粒徑約為91.3 nm。此粉末於700°C作活性反應測試,其CH4和CO2之轉化率分別為76.2%和77.9%,但此觸媒在反應過程中易出現嚴重積碳現象,導致觸媒在反應1 h後管線即因阻塞而終止反應。
為了進一步改良適用於二氧化碳甲烷重組反應用的LaNiO3觸媒,本研究選用Mg當添加劑並以二個階段來進行觸媒的改質。第一階段先以檸檬酸凝膠法合成出LaNi1-xMgxO3觸媒,檢討最適當的Mg添加量,其中以LaNi0.94Mg0.06O3觸媒擁有最佳的活性表現,於700°C作活性反應測試,其CH4和CO2之轉化率分別為62.7%和79.3%。
第二階段是希望能再提高觸媒的抗積碳能力及催化活性,將上述觸媒分成以共摻雜及擔體方式作改質。共摻雜方式是將不同計量比的Ce添加至LaNi0.94Mg0.06O3觸媒,其中則以La0.96Ce0.04Ni0.94Mg0.06O3觸媒具有最佳活性的表現,於700°C作活性反應測試,其CH4和CO2之轉化
率分別為75.9%和91.4%。擔體方式是選用200 nm的α-Al2O3為擔體,並比較在不同觸媒用量下其觸媒的活性,其中以觸媒用量為1 g的5wt.% LaNi0.94Mg0.06O3/α-Al2O3觸媒有最佳的活性表現、抗積碳能力及穩定性,於700°C作活性反應測試,其CH4和CO2之轉化率分別為88.9%和98.1%,在反應2 h後之積碳量僅為1wt.%,且在穩定性測試方面可在700°C下反應8 h仍能維持其催化活性而不衰退,此為四組觸媒中最佳者。
The methane reforming of carbon dioxide reaction could transform the greenhouse gas CH4 and CO2 into syngas CO and H2. The syngas could be used to produce methanol or some high value organic compounds. In order to enhance the reaction activity, stability, and carbon resistibility of the LaNiO3 catalyst used in the reforming reaction, the catalyst was prepared by citrate method and promoted by adding Mg, Ce or supported by α-Al2O3. Finally, LaNiO3, LaNi0.94Mg0.06O3, La0.96Ce0.04Ni0.94Mg0.06O3, and 5wt.% LaNi0.94Mg0.06O3 / α-Al2O3 catalysts would be discussed and compared in the catalytic performance.
The LaNiO3 phase was formed at 600°C initially from precursor prepared by the cictrate method. The specific surface area and particle size were 9.06 m2/g and about 91.3 nm respectively of LaNiO3 catalyst pre-heated at 350°C for 0.5 h and calcined at 700°C for 2 h. The conversion of CH4 and CO2 were 76.2% / 77.9% respectively when LaNiO3 catalyst reacted at 700°C, but the reaction was forced to terminate due to the serious carbon deposition after 1 h.
To improve the LaNiO3 catalyst used in the methane reforming of carbon dioxide reaction, magnesium was introduced as promoter to catalyst by two steps. First, the LaNi1-xMgxO3 catalyst was prepared by citrate method and discussed the best Mg adding content. And LaNi0.94Mg0.06O3 showed the best catalytic performance at 700°C, the CH4/CO2 conversion reached to 62.7% / 79.3%.
Second, to improve the catalytic performance and carbon resistability of catalyst, the LaNi1-xMgxO3 catalyst was promoted by co-doping and supported method. In co-doping way, Ce was adding to LaNi0.94Mg0.06O3 catalyst with different content. And La0.96Ce0.04Ni0.94Mg0.06O3 showed the best catalytic performance at 700°C, the CH4/CO2 conversion reached to 75.9% / 91.4%. In supported method way, LaNi0.94Mg0.06O3 was supported by α-Al2O3 with particle size 200 nm. 1 g of 5wt. LaNi0.94Mg0.06O3 / α-Al2O3 catalyst showed the best catalytic performance, carbon resistability, and stability in different using amounts. The CH4/CO2 conversion reached to 88.9% / 98.1%. It was only 1wt.% carbon deposition amount after 2 h activity reaction. And it could maintain the activity and stability(duribility) after reaction at 700°C for 8 h. It was also superior in these four catalysts.
Key words: Catalytic, LaNiO3, CH4, CO2, dry reforming.
1. 工業污染防治 第88期,“CO2減量與處理”,162 (2003)。
2. 工業污染防治 第94期,“溫室氣體管制措施與清淨能源”,117 (2005)。
3. S. G. Wang, “A detailed mechanism of thermal CO2 reforming of CH4”, J. Mol. Struct. (Theochem), 673, 181 (2004).
4. D. L. Trimm, “The Formation and Removal of Coke from Nickel Catalyst”, Catal. Rev. Sci. Eng., 16,155 (1977).
5. J. T. Richardson, S. A. Paripatyadar, “Carbon dioxide reforming of methane with supported rhodium”, Appl. Catal., 61 293 (1990).
6. A.T. Ashcroft, A.K. Cheetman, M. L. H. Green, P. D. F. Vernon, “Partial oxidation of methane to sythesis gas using carbon dioxide”, Nature, 352, 225 (1991).
7. C. H. Bartholomew, “Carbon deposition in steam reforming and methanation”, Catal. Rev. Sci. Eng., 24, 67 (1982).
8. C. B. Dupeyrat, G. A. S. Gallego, F. Mondragon, J. Barrault, J. M. Tatibouet ,“CO2 reforming of methane over LaNiO3 as precursor material”, Catal. Today, 107-108, 474 (2005).
9. C. B. Dupeyrat, G. Valderrama, A. Meneses, Fanor Martinez, Joe¨l Barrault, J. M. Tatibouët, “Pulse study of CO2 reforming of methane over LaNiO3”, Appl. Catal. A: Gen., 248, 143–151 (2003).
10. J. J. Guo, H. Lou, Y. H. Zhu, X. M. Zheng, “La-based perovskite precursors preparation and its catalytic activity for CO2 reforming of CH4”, Mater. Lett., 57, 4450–4455 (2003).
11. S. M. Lima and J. M. Assaf, “Ni–Fe catalysts based on perovskite-type oxides for dry reforming of methane to syngas”, Catal. Lett., 108(1-2), 4450-4455 (2006).
12. W. Y. Li, J. Feng and K. C. Xie, “Studies on catalysts of anti-carbon deposition for CH4 reforming with CO2”, Reaet. Kinet. Catal. Lett., 64 (2), 381-388 (1998).
13. Z. L. Zhang, X. E. Verykios, “Carbon dioxide reforming of methane to synthesis gas over Ni/La2O3 catalysts”, Appl. Catal. A: Gen., 138, 109-133 (1996).
14. Y. H. Cui, H. Y. Xu, Q. G. Ge, W. Z. Li, “Kinetic study on the CH4/CO2 reforming reaction: Ni–H in Ni/α-Al2O3 catalysts greatly improves the initial activity”, J. Mol. Catal. A: Chem., 243, 226–232 (2006).
15. S. B. Wang, G. Q. (Max) Lu, “CO2 reforming of methane on Ni catalysts: Effects of the support phase and preparation technique”, Appl. Catal. B: Environ., 16, 269-277 (1998).
16. G. C.de Araujo, S. M de Lima, J. M Assaf, M. A Pena, J. L. G Fierro, M. D. C. Rangel,“Catalytic evaluation of perovskite-type oxide LaNi1−xRuxO3 in methane dry reforming ”, Catal. Today, 133-135, 129-135 (2008).
17. G. S. Gallego, Fanor Mondrago´n, Joe¨l Barrault, J. M. Tatiboue¨t, Catherine Batiot-Dupeyrat, “CO2 reforming of CH4 over La–Ni based perovskite precursors”, Appl. Catal. A: Gen., 311, 164–171 (2006).
18. S. M. Lima, J. M. Assaf, “Synthesis and Characterization of LaNiO3, LaNi(1-x)FexO3 and LaNi(1-x)CoxO3 Perovskite Oxides for Catalysis Application”, J. Mater. Res., 5 (3), 329-335 (2002).
19. V.R. Choudhary, B.S. Uphade, A.A. Belhekar, “Oxidative conversion of methane to syngas over LaNiO3 perovskite with or without simultaneous steam and CO2 reforming reactions:influence of partial substitution of La and Ni”, J. Catal., 163, 312–318 (1996).
20. H. D. Jeong, K. I. Kim, D. S. Kim and I. K. Song, “Effect of promoters in the methane reforming with carbon dioxide to synthesis gas over Ni/HY catalysts”, J. Mol. Catal. A: Chem., 246, 43–48 (2006).
21. O. V. Krylov, A. Kh. Mamedov and S. R. Mirzabekova, “Interaction of carbon dioxide with methane on oxide catalysts”, Catal. Today, 42, 211-215 (1998).
22. G. S. Gallego, C. B. Dupeyrat, Joel Barrault, Elizabeth Florez, Fanor Mondragon,“Dry reforming of methane over LaNi1-yByO3+-δ (B = Mg, Co) perovskites used as catalyst precursor”, Appl. Catal. A: Gen., 334, 251–258 (2008).
23. S. M. Lima, J. M. Assaf, M. A. Pen˜, J.L.G. Fierro, “Structural features of La1-xCexNiO3 mixed oxides and performance for the dry reforming of methane”, Appl. Catal. A: Gen., 311, 94–104 (2006).
24. G. S. Gallego, J. G. Marin, C. B. Dupeyrat, Joe¨l Barrault, Fanor Mondrago´n, “Influence of Pr and Ce in dry methane reforming catalysts produced from La1-xAxNiO3-δ perovskites”, Appl. Catal. A: Gen., 369, 97-103 (2009).
25. C. E. Daza, Jaime Gallego, Fanor Mondrago´n, Sonia Moreno, Rafael Molina, “High stability of Ce-promoted Ni/Mg–Al catalysts derived from hydrotalcites in dry reforming of methane”, Fuel, 89, 592-603 (2010).
26. Y. Zhang-Steenwinkel, J. Beckers, A. Bliek, “Surface properties and catalytic performance in CO oxidation of cerium substituted lanthanum–manganese oxides”, Appl. Catal. A: Gen., 235, 79-92 (2002).
27. S. O. Choi, S. H. Moon,“Performance of La1-xCexFe0.7Ni0.3O3 perovskite catalysts for methane steam reforming”, Catal. Today, 146, 148–153 (2009).
28. Y. Cui, V. Galvita, L. Rihko-Struckmann, H. Lorenz, K. Sundmacher, “Steam reforming of glycerol: The experimental activity of La1-xCexNiO3 catalyst in comparison to the thermodynamic reaction equilibrium”, Appl. Catal. B: Environ., 90, 29-37 (2009).
29. J. B. Goodenogh, J. M. Longo, “Landolt-Bornstein New Series”, Speinger-Verlag Berlin and New York, V4. Parta. 126 (1970).
30. M. P. Pechini, “Method of Preparing Lead and Alkaline Earth Titanates and Niobates and Coationg Method Using the Same to Form a Capacitor”, U. S. Pat., No. 3 330 697, Jul. 11 (1967).
31. 吳榮宗,“工業觸媒槪論”,國興發行 (1989)。
32. A. Wold, B. Post, and E. Banks., “Lanthanum Rhodium and Lanthanum Cobalt Oxides”, J. Am. Chem. Soc., 79, 6365-6366 (1957).
33. M. P. Pechini, “Barium Titanium Citrate, Barium Titanate and Processes for Producing Same”, U.S. Pat., No. 3 231 328, Jan. 25, (1969).
34. D. Hennings, W. Mayr, “Theraml Decomposition of (BaTi) Citrates into Barium Titanate”, J. Solid State Chem., 26, 329-338 (1978).
35. G. A. Hutchins, G. H. Maher, S. D. Ross, “Control of the Ba〆Ti Ratio of BaTiO3 at a Value of Exactly 1 via Conversion to BaO〃TiO2〃3C6H8O7〃6H2O”, Am. Ceram. Soc. Bull., 66 (4), 681-684 (1987).
36. M. Kakihana, M. M. Milanova et al., “Polymerized Complex Route to Synthesis of Pure Y2Ti2O7 at 750 ℃ Using Yttrium-Titanium Mixed-Metal Citric Acid Complex”, J. Am. Ceram. Soc., 79 (6), 1673-1676 (1996).
37. S. G. Cho, P. F. Johnson and R.A. Condrate, “Thermal decomposition of (Sr, Ti) organic precursor during the Pechini process”, J. Mater. Sci., 25, 4738-4744 (1990).
38. 陳維新,江金龍,“空氣污染與防制”,高立圖書有限公司 (2001)。
39. I. Tomoyuki, “Highly Effective Compounds by Using Newly Developed Multi-Functional Composite Catalysts”, Conference on Industrial Waste Minimization and Sustainable Development’97, 565-575 (1997).
40. 袁中新,洪崇軒, “溫室氣體二氧化碳之常溫光催化還原技術研究”,行政院環境保護署 (2002)。
41. 胡興中,“觸媒原理與應用”,高立圖書有限公司 (2002)。
42. F. Fischer, H. Tropsch, “Conversion of methane into hydrogen and carbon monoxide” Brennstoff Chem., 3, 39 (1928).
43. S. G. Wang, Y. W. Li, J. X. Lu, M. Y. He and H. J. Jiao, “A detailed mechanism of thermal CO2 reforming of CH4”, J. Mol. Struct. (Theochem), 673, 181–189 (2004).
44. M.R. Goldwasser, M.E. Rivas, E.Pietri, M.J. Pérez-Zurita, M.L. Cubeiro, L. Gingembre, L. Leclercq, G. Leclercq, “Perovskites as catalysts precursors: CO2 reforming of CH4 on Ln1−xCaxRu0.8Ni0.2O3 (Ln = La, Sm, Nd)”, Appl. Catal. A: Gen., 255, 45–57 (2003).
45. X. Li, H. B. Zhang, F. Chi, S. J. Li, B. K. Xu and M. Y. Zhao, “Synthesis of nanocrystalline composite oxides La1-xSrxFe1-yCoyO3 with the perovskite structure using polyethylene glycol-gel method”, Mater. Sci. Eng., B18, 209-213 (1993).
46. J. S. Choi, K. I. Moon, Y. G. Kima, J. S. Lee, C. H. Kimb and D. L. Trimm, “Stable carbon dioxide reforming of methane over modified Ni/Al2O3 catalysts”, Catal. Lett., 52, 43–47 (1998).
47. K. J. Laidler, Chemical Kinetics, Third ed., Harper and Row, NewYork, (1987).
48. S. G. Wang, D. B. Cao, Y. W. Li, J. G. Wang and H. J. Jiao, “CO2 Reforming of CH4 on Ni(111): A Density Functional Theory Calculation”, J. Phys. Chem. B, 110, 9976-9983 (2006).
49. Rostrup-Niesen, “J.R. Industrial Relevance of Coking”, Catal. Today, 37 (1997).
50. Z. F. Yan, Q. Ling, X. M. Liu, L. H. Song, C. M. Song, R. G. Ding, A. Yuan and K. Qiao, “Mechanistic study of methane reforming with carbon dioxide on a supported nickel catalyst”, J. Chem. Res., 394, 400 (2005).
51. 行政院環保署空氣品質保護與噪音管制處, “行業污染特性手冊第四冊化工類一”, (1996)。
52. S. B. Wang, G. Q. (Max) Lu, G. J. Millar, “Carbon Dioxide Reforming of Methane To Produce Synthesis Gas over Metal-Supported Catalysts: State of the Art”, Energy & Fuels, 10 (4), 896-904 (1996).
53. T. Horiuchi, K. Sakuma, T. Fukui, Y. Kubo, T. Osaki and Y. Mori, “Suppression of carbon deposition in the CO2-reforming of CH4 by adding basic metal oxides to a Ni/Al2O3 catalyst”, Appl. Catal. A: Gen., 144, 111-120 (1996).
54. Z. X. Cheng, Q. G. Wu, J. L. Li and Q. M. Zhu, “Effects of promoters and preparation procedures on reforming of methane with carbon dioxide over Ni/Al2O3 catalyst”, Catal. Today, 30, 147-155 (1996).
55. O. Gonza´lez, J. Lujano, E. Pietri,“New Co-Ni catalyst systems used for methane dry reforming based on supported catalysts over an INT-MM1 mesoporous material and a perovskite-like oxide precursor LaCo0.4Ni0.6O3”, Catal. Today, 107–108, 436-443 (2005).
56. G. Valderrama, M. R. Goldwasser, C. U. Navarro, J. M. Tatiboue¨t, J. Barrault, C. B. Dupeyrat, F. Martı´nez, “Dry reforming of methane over Ni perovskite type oxides”, Catalysis Today, 107–108, 785–791 (2005).
57. V. R. Choudhary, K. C. Mondal, “CO2 reforming of methane combined with steam reforming or partial oxidation of methane to syngas over NdCoO3 perovskite-type mixed metal-oxide catalyst”, Appl. Energy, 83, 1024–1032 (2006).
58. Y. P. Wang, J. W. Zhu, L. L. Zhang, X. J. Yang, L. D. Lu, X. Wang, “Preparation and characterization of perovskite LaFeO3 nanocrystals”, Mater. Lett., 60, 1767–1770 (2006).
59. 吳雲影, 元井昌司, 杉山和夫, 松田常雄, 吉田泰彦, “還元ぺロブスカイト型複酸化物触媒によるメタンと二酸化炭素との反応”, Bull. Chem. Soc. Jpn., 9, 613 (2000).
60. M. E. Rivas, J. L. G. Fierro, M. R. Goldwasser, E. Pietri, M. J. P. Zurita, A. G. Constant, G. Leclercq,“Structural features and performance of LaNi1-xRhxO3 system for the dry”, Appl. Catal. A: Gen., 344, 10–19 (2008).
61. A. Roger, D. Souza, M. Saiful Islam and E. Ivers-Tiffee, “Formation and migration of cation defects in the perovskite oxide LaMnO3”, J. of Mater. Chem., 9, 1621-1627 (1999).
62. J. W. Liu, Z. Zeng, Q. Q. Zheng, H. Q. Lin, “Effective Transfer Integrals for the Jahn-Teller Distortion in LaMnO3”, 60 (18), 12968-12973 (1999).
63. 高弘任,“檸檬酸法製備鋁酸鍶鈣螢光粉體及其光性質研究”, 國立成功大學材料科學及工程學系,碩士論文,民國九十七年二月。
64. M. S. G. Baythoun and F. R. Sale, “Production of Strontium-substituted Lanthanum Manganite Perovskite Powder by the Amorphous Citrate Process”, J. Mater. Sci., 17, 2757-2769 (1982).
65. P. A. Lessing, “Mixed-Cation Oxide Powders via Polymeric Precursors”, Am. Ceram. Soc. Bull., 68 (5), 1002-1007 (1989).
66. 顧洋,二氧化碳處理技術簡介,經濟部能源局,94年10月。
67. J. R. Smith, J. A. Appelbaum,Theory of Chemisorption, 19 (1980).
68. D. A. King, D. P. Woodruff, The Chemical Physics of Solid Surface and Heterogeneous Catalysis (1981).
69. 郭晏瑱,“La1-xSrxMnO3粉末之鑑定及催化CO + NO反應之研究”, 國立成功大學材料科學及工程學系,碩士論文,民國九十二年六月。
70. 許維真,“鈣鈦礦型LaNiO3觸媒應用於CH4/CO2重組反應之研究”, 國立成功大學材料科學及工程學系,碩士論文,民國九十七年一月。
71. M. Crespin, P. Levitz, L. Gatineau, “Reduced Forms of LaNiO3 Perovskite: Part 1.-Evidence for New Phases: La2Ni2O5 and LaNiO2”, J. Chem. SOC., Faraday Trans. 2, 79, 1181-1194 (1983).
72. D. Halliche, O. Cherifi, A. Auroux, “Microcalorimetric studies and methane reforming by CO2 on Ni-based zeolite catalysts”, Thermochimica Acta, 434, 125–131 (2005).
73. X. Chen, K. Honda, Z. G. Zhang, “A comprehensive comparison of CH4-CO2 reforming activities of NiO/Al2O3 catalysts under fixed- and fluidized-bed operations”, Appl. Catal. A: Gen., 288, 86–97 (2005).
74. S. B. Wang, G. Q. (Max) Lu, “A Comprehensive Study on Carbon Dioxide Reforming of Methane over Ni/γ-Al2O3 Catalysts”, Ind. Eng. Chem. Res., 38, 2615-2625 (1999).
75. X. Chen, K. Honda, Z. G. Zhang, “CO2–CH4 reforming over NiO/γ-Al2O3 in fixed-bed/fluidized-bed switching mode”, Catal. Today, 93–95, 87–93 (2004).
76. J. X. Chen, R. J. Wang, J. Y. Zhang, F. Heb, S. Hanb, “Effects of preparation methods on properties of Ni/CeO2–Al2O3 catalysts for methane reforming with carbon dioxide”, J. Mol. Catal. A: Chem., 235, 302–310 (2005).
77. Z. Y. Hou, X. M. Zheng, T. Yashima, “High Coke-Resistence of K-Ca-Promoted Ni/α-Al2O3 Catalyst for CH4 Reforming with CO2”, React. Kinet. Catal. Lett., 84 (2), 229-235 (2005).
78. A. A. Lemonidou, M. A. Goula, I. A. Vasalos, “Carbon dioxide reforming of methane over 5 wt.% nickel calcium aluminate catalysts - effect of preparation method”, Catal. Today, 46, 175-183 (1998).
79. J. H. Fei, Z. Y. Houl, X. M. Zheng, T. Yashima, “Doped Ni catalysts for methane reforming with CO2”, Catal. Lett., 98 (4), 241-245 (2004).
80. Y. Q. Wang, L. Yang, T. Wang, Z. Y. Zhang, G. Ruan, S. Han, “Effect of Metal Oxides on the Reforming of Methane with Carbon Dioxside”, Reaet. Kinet. Oatal. Lett., 68 (2), 183-190 (1999).
81. Z. Y. Hou, O. Yokota, T. Tanaka, T. Yashima, “Investigation of CH4 reforming with CO2 on meso-porous Al2O3-supported Ni catalyst”, Catal. Lett., 89 (1–2), 121-127 (2003).
82. T. Shishido, M. Sukenobu, H. Morioka, R. Furukawa, H. Shirahase, K. Takehira, “CO2 reforming of CH4 over Ni/Mg–Al oxide catalysts prepared by solid phase crystallization method from Mg–Al hydrotalcite-like precursors”, Catal. Lett., 73 (1), 21-26 (2001).
83. J. J. Guo, H. Lou, H. Zhao, X. M. Zheng, “Improvement of stability of out-layer MgAl2O4 spinel for a Ni/MgAl2O4/Al2O3 catalyst in dry reforming of methane”, React. Kinet. Catal. Lett., 84 (1), 93-100 (2005).
84. L. Chen, Y. Lua, Q. Hong, J. Lin, F. M. Dautzenberg, “Catalytic partial oxidation of methane to syngas over Ca-decorated-Al2O3-supported Ni and NiB catalysts”, Appl. Catal. A: Gen., 292, 295–304 (2005).
85. K. Heitnes, “Catalytic partial oxidation of methane to synthesis gas using monolithic reactors”, Catal. Today, 21, 471-480 (1994).
86. A. T. Ashcroft, “Partial oxidation of methane to synthesis gas using carbon dioxide”, Nature, 352, 225-226 (1991).
87. A. Nandini, K. K. Pant, S. C. Dhingra, “Kinetic study of the catalytic carbon dioxide reforming of methane to synthesis gas over Ni-K/CeO2-Al2O3 catalyst”, Appl. Catal. A: Gen., 308, 119–127 (2006).
88. J. Juna, J. C. Kimb, J. H. Shina, K. W. Leea, Y. S. Baek, “Effect of electron beam irradiation on CO2 reformingof methane over Ni/Al2O3 catalysts”, Radiation Phy. and Chem., 71, 1095-1101 (2004).
89. H. S. Li, J. F. Wang, “Study on CO2 reforming of methane to syngas over Al2O3–ZrO2 supported Ni catalysts prepared via a direct sol–gel process”, Chem. Eng. Sci., 59, 4861-4867 (2004).
90. U. Olsbye, O. Moenl, Å. Slagtern, I. M. Dahl, “An investigation of the coking properties of fixed and fluid bed reactors during methane-to-synthesis gas reactions”, Appl. Catal. A: Gen., 228, 289–303 (2002).
91. T. Osakil, T. Mori, “Role of Potassium in Carbon-Free CO2 Reforming of Methane on K-Promoted Ni/Al2O3 Catalysts”, J. Catal., 204, 89–97 (2001).
92. F. Frusteri, F. Arena, G. Calogero, T. Torre, A. Parmaliana, “Potassium-enhanced stability of Ni/MgO catalysts in the dry-reforming of methane”, Catal. Commun., 2, 49-56 (2001).
93. Y. H. Hu, E. Ruckenstein, “An optimum NiO content in the CO2 reforming of CH4 with NiO / MgO solid solution catalysts”, Catal. Lett., 36, 145-149 (1996).
94. Y. H. Hu, E. Ruckenstein, “The characterization of a highly effective NiO/MgO solid solution catalyst in the CO2 reforming of CH4”, Catal. Lett., 43, 71-77 (1997).
95. E. Ruckenstein, Y. H. Hu, “Carbon dioxide reforming of methane over nickel/alkaline earth metal oxide catalysts”, Appl. Catal. A: Gen., 133, 149-161 (1995).
96. Y. H. Hu and E. Ruckenstein, “ Binary MgO-based solid solution catalysts for methane conversion to syngas”, Catal. Rev., 44 (3), 423–453 (2002).
97. H. W. Chen, C. Y. Wang, C. H. Yu, L. T. Tseng, P. H. Liao, “Carbon dioxide reforming of methane reaction catalyzed by stable nickel copper catalysts”, Catal. Today, 97, 173–180 (2004).
98. A. Effendi, K. Hellgardt, Z. G. Zhang, T. Yoshida, “Characterisation of carbon deposits on Ni/SiO2 in the reforming of CH4–CO2 using fixed- and fluidised-bed reactors”, Catal. Commun., 4, 203–207 (2003).
99. R. Takahashi, S. Sato, T. Sodesawa, S. Tomiyama, “CO2-reforming of methane over Ni/SiO2 catalyst prepared by homogeneous precipitation in sol–gel-derived silica gel”, Appl. Catal. A: Gen., 286, 142–147 (2005).
100. Q. S. Jinga, X. M. Zhengb, “Combined catalytic partial oxidation and CO2 reforming of methane over ZrO2-modified Ni/SiO2 catalysts using fluidized-bed reactor”, Energy, 31, 2184–2192 (2006).
101. K. Asamia, X. H. Li, K. Fujimoto, Y. Koyamab, A. Sakurama, N. Kometani, Y. Yonezawa, “CO2 reforming of CH4 over ceria-supported metal catalysts”, Catal. Today, 84, 27–31 (2003).
102. Y. L. Yang, W. Z. Li, H. G. Xu, “a new explanation for the carbon deposition and elimination over supported Ni, Ni-Ce and Ni-Co catalysts for CO2-reforming of methane”, React. Kinet. Catal. Lett., 77 (1), 155-162 (2002).
103. J. B. Wang, Y. S. Wu, T. J. Huangb, “Effects of carbon deposition and de-coking treatments on the activation of CH4 and CO2 in CO2 reforming of CH4 over Ni/yttria-doped ceria catalysts”, Appl. Catal. A: Gen., 272, 289–298 (2004).
104. S. B. Wang, G. Q. (Max) Lu, “Role of CeO2 in Ni/CeO2-Al2O3 catalysts for carbon dioxide reforming of methane”, Appl. Catal. B: Environ., 19, 267-277 (1998).
105. K. Takanabea, K. Nagaoka, K. Aika, “Improved resistance against coke deposition of titania supported cobalt and nickel bimetallic catalysts for carbon dioxide reforming of methane”, Catal. Lett., 102 (3-4), 153-157 (2005).
106. Z. L. Zhang, X. E. Verykios, “Mechanistic aspects of carbon dioxide reforming of methane to synthesis gas over Ni catalysts”, Catal. Lett., 38, 175-179 (1996).
107. J. Z. Luo, L.Z. Gao, C. F. Ng, C. T. Au, “Mechanistic studies of CO2/CH4 reforming over Ni–La2O3/5A”, Catal. Lett., 62, 153–158 (1999).
108. Z. L. Zhang, X. E. Verykios, S. M. MacDonald, S. Affrossman, “Comparative Study of Carbon Dioxide Reforming of Methane to Synthesis Gas over Ni/La2O3 and Conventional Nickel-Based Catalysts”, J. Phys. Chem., 100, 744-754 (1996).
109. E. Ruckenstein, Y. H. Hu, “ Interactions between Ni and La2O3 in Ni/La2O3 Catalysts Prepared Using Different Ni Precursors”, J. Catal., 161, 55–61 (1996).
110. V. A. Tsipouriari, X. E. Verykios, “Kinetic study of the catalytic reforming of methane with carbon dioxide to synthesis gas over Ni/La2O3 catalyst”, Catal. Today, 64, 83–90 (2001).
111. T. Hayakawa, S. Suzuki, J. Nakamura, T. Uchijima, S. Hamakawa, K. Suzuki, T. Shishido, K. Takehir, “CO2 reforming of CH4 over Ni/perovskite catalysts prepared by solid phase crystallization method”, Appl. Catal. A: Gen., 183, 273-285 (1999).
112. T. Hayakawa, H. Harihara, A. G. Andersen, K. Suzuki, H. Yasuda, T. Tsunoda, S. Hamakawa, “Sustainable Ni/Cal-xSrxTiO3 catalyst prepared in situ for the partial oxidation of methane to synthesis gas ”, Appl. Catal. A: Gen., 149, 391-410 (1997).
113. R. Shiozaki, A. G. Andersen, T. Hayakawa, S. Hamakawa, K. Suzuki, M. Shimizu, K. Takehira, “Partial oxidation of methane over a catalyst Ni/BaTiO3 prepared by solid phase crystallization”, J. Chem. Soc., Faraday Trans., 93 (17), 3235-3242 (1997).
114. T. Hayakawa, H. Harihara, A. G. Andersen, Andrew P. E. York, K. Suzuki, “A Sustainable Catalyst for the Partial Oxidation of Methane to Syngas: Ni/Ca1-xSrxTiO3 Prepared In Situ from Perovskite Precursors”, Angew Chem. In. Ed. Eng., 35 (2), 192-195 (1996).
115. X. C. Li, M. Wu, Z. H. Lai, F. He, “Studies on nickel-based catalysts for carbon dioxide reforming of methane”, Appl. Catal. A: Gen., 290, 81–86 (2005).
116. M. Rezaei, S. M. Alavi, S. Sahebdelfar, Z. F. Yan, “Nanocrystalline Zirconia as Support for Nickel Catalyst in Methane Reforming with CO2”, Energy & Fuels, 20, 923-929 (2006).
117. Y. H. (Cathy) Chin, D. L. King, H. S. Roh, Y. Wang, S. M. Heald, “Structure and reactivity investigations on supported bimetallic Au–Ni catalysts used for hydrocarbon steam reforming”, J. Catal., 244, 153–162 (2006).
118. D. J. Moon, J. M. Park, J. S. Kang, K. S. Yoo, S. I. Hong, “Cogeneration of a Synthesis Gas and Electricity Through Internal Reforming of Methane by Carbon Dioxide in a Solid Oxide Fuel Cell System”, J. Ind. Eng. Chem., 12 (1), 149-155 (2006).
119. M. C. J. Bradford, M. A. Vannice, “Catalytic reforming of methane with carbon dioxide over nickel catalysts ΙΙ. Reaction kinetics”, Appl. Catal. A: Gen., 142, 97-122 (1996).
120. M. C. J. Bradford, M. A. Vannice, “Catalytic reforming of methane with carbon dioxide over nickel catalysts Ι. Catalyst characterization and activity”, Appl. Catal. A: Gen., 142, 73-96 (1996).
121. T. E. Solh, K. Jarosch, H. de Lasa, “Catalytic Dry Reforming of Methane in a CREC Riser Simulator Kinetic Modeling and Model Discrimination”, Ind. Eng. Chem. Res., 42, 2507-2515 (2003).
122. A. Takano, T. Tagawa, S. Goto, “Carbon dioxode reforming of methane on supported nickel catalysts”, J. Chem. Eng. of Japan, 27 (6), 727-731 (1994).
123. A. Berman, R. K. Karn, M. Epstein, “A New Catalyst System for High - Temperature Solar Reforming of Methane”, Energy & Fuels, 20, 455-462 (2006).
124. G. J. Kim, D. S. Cho, K. H. Kim, J. H. Kim, “The reaction of CO2 with CH4 to synthesize H2 and CO over nickel-loaded Y-zeolites”, Catal. Lett., 28, 41-52 (1994).
125. Z. L. Zhang, X. E. Verykios, “Carbon dioxide reforming of methane to synthesis gas over supported Ni catalysts”, Catal. Today, 21, 589-595 (1994).
126. O. Yamazaki, T. Nozaki, K. Omata, K. Fujimoto,“Reduction of Carbon Dioxide by Methane with Ni-on-MgO-CaO Containing Catalysts”, Chem. Lett., 10, 1953-1954 (1992).