| 研究生: |
翁允中 Weng, Yun-Chung |
|---|---|
| 論文名稱: |
內藏型永磁馬達之低轉矩漣波直接轉矩控制技術 Low Torque Ripple Direct Torque Control for IPM Motor |
| 指導教授: |
謝旻甫
Hsieh, Min-Fu |
| 共同指導教授: |
楊澤民
Yang, Joe-Ming |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 系統及船舶機電工程學系 Department of Systems and Naval Mechatronic Engineering |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 78 |
| 中文關鍵詞: | 內藏型永磁同步馬達 、直接轉矩控制 、向量控制 |
| 外文關鍵詞: | interior permanent magnet motor, direct torque control, space vector control |
| 相關次數: | 點閱:72 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主要針對內藏型永磁馬達之空間向量直接轉矩控制技術進行研究,以修正電壓向量命令之方法,減少馬達輸出之電磁轉矩漣波。本文對電壓與內藏型永磁馬達轉矩之關係進行分析,並探討馬達暫、穩態之電壓與磁交鏈表現,從該結果設計一演算法,給予變頻器更加適合之電壓向量,以減少電壓與磁交鏈之漣波,進而減少轉矩漣波。
文中利用 Simulink電路模擬軟體建立控制架構,並模擬變頻器與微控制器之動作,此外,並利用 Maxwell進行馬達模擬,以求得馬達各項參數,並將其結合至 Simulink觀察馬達模型之表現。之後,將程式碼寫入德州儀器 C2000微控制晶片以實現變頻器開關命令之控制器,再利用硬體迴路 (Hardware in the loop, HIL)模擬驅動電路及馬達動作,驗證控制器及演算法在空間向量直接轉矩控制下降低馬達輸出之電磁轉矩漣波之效能。
This thesis proposes a method for permanent magnet synchronous motors to achieve low torque ripple by applying space vector modulation direct torque control (SVM-DTC). It analyses the relationship between voltage and electromagnetic torque and discusses the behavior of the voltage and flux linkage.
Based on the results obtained through simulations, this thesis develops a new algorithm to reduce the torque ripple by giving a proper command to the voltage source inverter (VSI).
In order to validate the proposed algorithm, Simulink is used to simulate the electric circuit and microcontroller and observe the performance of the motor model. Then, Hardware in the loop (HIL) and Texas Instruments' microcontroller are utilized to validate the simulation results and the performance of the proposed method.
[1]
陳柏勳,"具相位超前之無刷直流馬達無感測驅動系統", 國立成功大學碩士論文, 2007。
[2]
呂怡萱, "內藏型永磁馬達直接轉矩向量控制器設計," 國立成功大學碩士論文, 2017。
[3]
曹峻嘉, "運用疊代學習控制器於永磁同步馬達轉矩漣波抑制之實作", 國立成功大學碩士論文, 2013。
[4]
G. Pellegrino, A. Vagati, B. Boazzo, and P. Guglielmi, "Comparison of induction and PM synchronous motor drives for EV application including design examples", IEEE Trans. Ind. Appl., vol. 48, no. 6, pp. 2322-2332, Nov. 2012.
[5]
S. Morimoto, Y. Takeda, T. Hirasa, and K. Taniguchi, "Expansion of operating limits for permanent magnet motor by current vector control considering inverter capacity", IEEE Trans. Ind. Appl., vol. 26, no. 5, pp. 866-871, Sep./Oct. 1990.
[6]
I. Takahashi and T. Noguchi, "A new quick-response and high-efficiency control strategy of an induction motor", IEEE Trans. Ind. Appl., vol. IA-22, no. 5, pp. 820-827, Sep. 1986.
[7]
M. Depenbrock, "Direct self-control (DSC) of inverter-fed induction machine", IEEE Trans. Power Electron., vol. 3, no. 4, pp. 420-429, Oct. 1988.
[8]
Y. Zhang, J. Zhu, W. Xu, and Y. Guo, "A simple method to reduce torque ripple in direct torque-controlled permanent-magnet
74
synchronous motor by using vectors with variable amplitude and angle", IEEE Trans. Ind. Electron., vol. 58, no. 7, pp. 2848-2859, Jul. 2011.
[9]
K.-K. Shyu, J.-K. Lin, V.-T. Pham, M.-J. Yang, and T.-W. Wang, "Global minimum torque ripple design for direct torque control of induction motor drives", IEEE Trans. Ind. Electron., vol. 57, no. 9, pp. 3148-3156, Sep. 2010.
[10]
Y. Ren, Z. Q. Zhu, and J. Liu, "Direct torque control of permanent-magnet synchronous machine drives with a simple duty ratio regulator", IEEE Trans. Ind. Electron., vol. 61, no. 10, pp. 5249-5258, Oct. 2014.
[11]
D. Sun, J. G. Zhu, and Y. K. He, "Continuous direct torque control of permanent magnet synchronous motor based on SVM", in proceedings of Sixth International Conference on Electrical Machines and Systems, vol. 2, pp. 596-598, Nov. 2003.
[12]
G. Abad, M. A. Rodriguez, and J. Poza, "Two-level VSC based predictive direct torque control of the doubly fed induction machine with reduced torque and flux ripples at low constant switching frequency", IEEE Trans. Power Electron., vol. 23, no. 3, pp. 1050-1061, May 2008.
[13]
M. H. Vafaie, B. M. Dehkordi, P. Moallem, and A. Kiyoumarsi, "Minimizing torque and flux ripples and improving dynamic response of PMSM using a voltage vector with optimal parameters", IEEE
75
Trans. Ind. Electron., vol. 63, no. 6, pp. 3876-3888, Jun. 2016.
[14]
M. E. H. Benbouzid, D. Diallo, and M. Zeraouila, "Advanced fault tolerant control of induction-motor drives for EV/HEV traction applications: From conventional to modern and intelligent control techniques", IEEE Trans. Veh. Technol., vol. 56, no. 2, pp. 519-528, Mar. 2007.
[15]
鐘裕勛, "應用耦合模擬於同步磁阻馬達電流控制器之研製," 國立成功大學碩士論文, 2016
[16]
T.H. Nguyen “Design of 10kW interior permanent magnet motor for EV traction.” National Cheng Kung University Master Thesis, 2016.
[17]
B. K. Bose, "A high-performance inverter fed drive system of an interior permanent magnet synchronous machine", IEEE Trans. on Ind. Appl., vol. IA-24, pp. 987-997 Sept/Oct 1988.
[18]
楊國良, 李建雄, "永磁同步電機控制技術," 知識產權出版社, 2015
[19]
H. H. Choi, H. M. Yun, and Y. Kim, "Implementation of evolutionary fuzzy PID speed controller for PM synchronous motor", IEEE Trans. Ind. Informat., vol. 11, no. 2, pp. 540-547, Apr. 2015.
[20]
M. F. Rahman, W. Y. Hu, Κ. W. Lim, and M. A. Rahman, "An investigation of direct and indirect torque controllers for PM synchronous motor drives", in proceedings of Second International Conference on Power Electronics and Drive Systems, pp. 519-523, May 1997.
76
[21]
Y. Hu, C. Tian, Z. You, Y. Gu, L. X. Tang, and M.F. Rnhman "In-depth research on direct torque control of permanent magnet synchronous motor," in proceedings of IEEE 2002 28th Annual Conference of the Industrial Electronics Society, vol. 2, pp. 1060-1065, November, 2002.
[22]
L. Zhong, M. F. Rahman, W. Y. Hu, and K.W. Lim, "Analysis of direct torque control in permanent magnet synchronous motor drives", IEEE Trans. Power Electron., vol. 12, no. 3, pp. 528-536, May 1997.
[23]
胡育文, 高瑾, 楊建飛, 郝振洋, "永磁同步電動機直接轉矩控制系統", 機械工業出版社, 2015。
[24]
A. Berzoy, J. Rengifo, and O. Mohammed, "Fuzzy predictive DTC of induction machines with reduced torque ripple and high-performance operation", IEEE Trans. Power Electron., vol. 33, no. 3, pp. 2580-2587, Apr. 2018.
[25]
H Ziane, J M Retif, and T. Rekioua, "Fixed-switching-frequency DTC control for PM synchronous machine with minimum torque ripples", in proceedings of Canadian Journal of Electrical and Computer Engineering, vol. 33, no. 3–4, pp. 183-189, Dec. 2008.
[26]
G. Foo and M.F. Rahman, "Direct torque and flux control of an IPM synchronous motor drive using a backstepping approach", in proceedings of IET Electric Power Applications, vol. 3, pp. 413, Oct. 2009.
[27]
A. Shinohara, Y. Inoue, S. Morimoto, and M. Sanada, "Maximum torque per ampere control in stator flux linkage synchronous frame for DTC-based PMSM drives without q-axis inductance", IEEE Trans. Ind. Appl., no. 99, pp. 1-1, Mar. 2017.
[28]
張晉瑋, "應用磁電耦合分析之內藏式永磁同步馬達弱磁控制", 國立成功大學碩士論文, 2017。
[29]
T. Inoue, Y. Inoue, S. Morimoto, and M. Sanada, "Maximum torque per ampere control of a direct torque-controlled PMSM in a stator flux linkage synchronous frame", IEEE Trans. Ind. Appl., vol. 52, no. 3, pp. 2360-2367, Feb. 2016.
[30]
S. Morimoto, M. Sanada, and Y. Takeda, "Wide-speed operation of interior permanent magnet synchronous motors with high-performance current regulator", IEEE Trans. Ind. Appl., vol. 30, no. 4, pp. 920-926, Jul./Aug. 1994.
[31]
I. Boldea, M.C. Paicu, and G.-D. Andreescu, "Active flux concept for motion sensorless unified AC drives", IEEE Trans. Power Electron., vol. 23, no. 5, pp. 2612-2618, Nov. 2008.
[32]
A. Shinohara, Y. Inoue, S. Morimoto, and M. Sanada, "Direct calculation method of reference flux linkage for maximum torque per ampere control in DTC-based IPMSM drives", IEEE Trans. Power Electron., vol. 32, no. 3, pp. 2114-2122, Mar. 2017.
[33]
A. Shinohara, Y. Inoue, S. Morimoto, and M. Sanada, "A reference flux calculation method with stator flux linkage synchronous frame for MTPA control in direct torque controlled PMSM drives", in proceedings of 18th International Conference on Electrical Machines
78
and Systems, vol. 26P1-12, pp. 1-6, Oct. 2015.
[34]
T. Sun, J. Wang, and M. Koc, "Self-learning direct flux vector control of interior permanent-magnet machine drives", IEEE Trans. Power Electron., vol. 32, no. 6, pp. 4652-4662, Jun. 2017.
校內:2023-08-27公開