簡易檢索 / 詳目顯示

研究生: 曹義弘
Tsao, Yi-Hong
論文名稱: 開發用於異構級解析度的核醣體定位技術數據分析流程
To develop a pipeline for analyzing ribosome profiling data with isoform-level resolution
指導教授: 曾大千
Tseng, Ta-Chien
學位類別: 碩士
Master
系所名稱: 生物科學與科技學院 - 生物科技與產業科學系
Department of Biotechnology and Bioindustry Sciences
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 141
中文關鍵詞: 核醣體定位技術
外文關鍵詞: Ribosome profiling
相關次數: 點閱:46下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 核醣體定位技術(ribosome-profiling)是一種新興的高通量定序技術。它可以在轉譯的過程中得知哪些mRNA正在被核醣體結合來進行蛋白質合成,而核醣體結合的區域大約27~40個核苷酸。可能是因為片段太短,這些片段在進行序列比對時,通常會比對到轉錄體中的許多位置,使得這些片段會被丟棄或隨機分配,而導致基因表現量計算錯誤。所以我們開發一個更適合用於核醣體定位技術的分析流程,並且可以用於估算異構體等級的表現量。在我的研究中,我們使用Cutadapt、Bowtie、RSEM和Perl來開發這個分析流程。第一步,預處理,用Cutadapt切除adapter並進行長度篩選。接著,透過Bowtie去除粒線體核醣體RNA,黴漿菌核醣體RNA,人類核醣體RNA等污染物。第二步,透過Bowtie比對片段、RSEM將含糊不清的片段分配到到轉錄體中。第三步,用我們開發的程式(由Perl編寫)計算基因和異構體的表現量。除此之外,可以到資料庫繪製這次分析結果的核醣體結合圖譜,並且供使用者下載。與其他程式相比,我們的分析流程可以提供比先前軟體在每個轉錄物中的表現量估算更為準確、合理。

    Ribosome profiling (Ribo-seq) is an emerging high-throughput sequencing technology. It provides the information about what kinds of mRNA are engaged in protein synthesis. Due to the ribosome-bound region is very short, approximately 27~40 nucleotides. These fragments are easily mapped to many positions in the transcript when they are aligned. It will lead to misinterpretation of the expression level of genes. Therefore, we want to develop a pipeline that is more exactly locating the ribosome binding position and can be used to estimate the expression isoform level. In this study, we use Cutadapt, Bowtie, RSEM (RNA-seq by expectation-maximization), and Perl to develop this pipeline. First step, pre-processing, we cut the adapter sequence and length selection by Cutadapt. Then, the contaminations such as mitochondria rRNAs, mycoplasma rRNAs, Homo sapiens rRNAs are removed by Bowtie. Second step, map reads to transcriptome by Bowtie and assign multi-mapped reads by RSEM. Third step, calculate gene and isoform expression levels with the program (written by Perl) developed by us. Additionally, we establish a database to draw the ribosome profile, and the pipeline can be download there. Compared to other programs, we provide a more accurate and reasonable estimation of the expression of each transcript.

    中文摘要 ..................................................................................................... I 英文摘要................................................................................................... II 誌謝.......................................................................................................... VI 目錄......................................................................................................... VII 表目錄...................................................................................................... IX 圖目錄...................................................................................................... XI 附表目錄............................................................................................... XIII 附圖目錄............................................................................................... XIV 縮寫表.................................................................................................... XV 中英文對照表...................................................................................... XVIII 一、研究背景............................................................................................. 1 1-1分子生物學中心法則.................................................................. 1 1-2轉錄體......................................................................................... 1 1-3轉譯調控與重要性...................................................................... 2 1-4次世代定序技術.......................................................................... 7 1-5 轉譯體...................................................................................... 10 1-6 核醣體定位技術的計算資源................................................... 12 1-7研究動機與目標........................................................................ 15 VIII 二、材料與方法....................................................................................... 17 2-1序列比對之參考資料製備........................................................ 17 2-2資料分析與分析流程................................................................ 33 2-3分析流程使用之軟體與平台.................................................... 48 三、結果.................................................................................................. 49 3-1分析流程介紹............................................................................ 49 3-2本流程與Ribomap之比較分析................................................ 54 3-3本流程在細胞實驗之應用........................................................ 57 四、討論.................................................................................................. 60 4-1討論........................................................................................... 60 4-2未來展望.................................................................................... 64 參考文獻.................................................................................................. 66 圖表.......................................................................................................... 80 附錄........................................................................................................ 134

    Alisoltani, A., Fallahi, H., Shiran, B., Alisoltani, A., and Ebrahimie, E. RNA-Seq SSRs and small RNA-Seq SSRs: New approaches in cancer biomarker discovery. Gene 560, 34-43, 2015.

    Allen, G.S., and Frank, J. Structural insights on the translation initiation complex: ghosts of a universal initiation complex. Molecular Microbiology 63, 941-950, 2007.

    Andreev, D.E., O'Connor, Patrick B.F., Loughran, G., Dmitriev, S.E., Baranov, P.V., and Shatsky, I.N. Insights into the mechanisms of eukaryotic translation gained with ribosome profiling. Nucleic Acids Research 45, 513-526, 2016.

    Andrews, S. FastQC: A Quality Control tool for High Throughput Sequence Data. http://wwwbioinformaticsbabrahamacuk/projects/fastqc, 2010.

    Aparicio, L.A., Abella, V., Valladares, M., and Figueroa, A. Posttranscriptional regulation by RNA-binding proteins during epithelial-to-mesenchymal transition. Cellular and Molecular Life Sciences 70, 4463-4477, 2013.

    Atger, F., Gobet, C., Marquis, J., Martin, E., Wang, J., Weger, B., Lefebvre, G., Descombes, P., Naef, F., and Gachon, F. Circadian and feeding rhythms differentially affect rhythmic mRNA transcription and translation in mouse liver. Proceedings of the National Academy of Sciences of the United States of America 112, E6579, 2015.

    Backman, T.W.H., and Girke, T. systemPipeR: NGS workflow and report generation environment. BioMed Central Bioinformatics 17, 388, 2016.

    Benson, D.A., Cavanaugh, M., Clark, K., Karsch-Mizrachi, I., Lipman, D.J., Ostell, J., and Sayers, E.W. GenBank. Nucleic Acids Research 41, D36-D42, 2012.

    Bentley, D.R. Whole-genome re-sequencing. Current Opinion in Genetics and Development 16, 545-552, 2006.

    Bhat, M., Robichaud, N., Hulea, L., Sonenberg, N., Pelletier, J., and Topisirovic, I. Targeting the translation machinery in cancer. Nature Reviews Drug Discovery 14, 261, 2015.

    Brar, G.A., and Weissman, J.S. Ribosome profiling reveals the what, when, where and how of protein synthesis. Nature Reviews Molecular Cell Biology 16, 651, 2015.

    Calkhoven, C.F., Müller, C., and Leutz, A. Translational control of gene expression and disease. Trends in Molecular Medicine 8, 577-583, 2002.

    Carja, O., Xing, T., Wallace, E.W.J., Plotkin, J.B., and Shah, P. riboviz: analysis and visualization of ribosome profiling datasets. BioMed Central Bioinformatics 18, 461, 2017.

    Chang, S.H., and Hla, T. Post-transcriptional gene regulation by HuR and microRNAs in angiogenesis. Current Opinion in Hematology 21, 235-240, 2014.

    Chen, G., Gharib, T.G., Huang, C.C., Taylor, J.M., Misek, D.E., Kardia, S.L., Giordano, T.J., Iannettoni, M.D., Orringer, M.B., Hanash, S.M., and Beer, D.G. Discordant protein and mRNA expression in lung adenocarcinomas. Molecular and Cellular Proteomics 1, 304-313, 2002.

    Chu, Y., and Corey, D.R. RNA sequencing: platform selection, experimental design, and data interpretation. Nucleic Acid Therapeutics 22, 271-274, 2012.

    Cock, P.J.A., Fields, C.J., Goto, N., Heuer, M.L., and Rice, P.M. The Sanger FASTQ file format for sequences with quality scores, and the Solexa/Illumina FASTQ variants. Nucleic Acids Research 38, 1767-1771, 2010.

    Crappé, J., Ndah, E., Koch, A., Steyaert, S., Gawron, D., De Keulenaer, S., De Meester, E., De Meyer, T., Van Criekinge, W., Van Damme, P., and Menschaert, G. PROTEOFORMER: deep proteome coverage through ribosome profiling and MS integration. Nucleic Acids Research 43, e29, 2014.

    Crespo, P., and León, J. Ras proteins in the control of the cell cycle and cell differentiation. Cellular and Molecular Life Sciences 57, 1613-1636, 2000.

    Crew, J.P., Fuggle, S., Bicknell, R., Cranston, D.W., Benedetti, A.d., and Harris, A.L. Eukaryotic initiation factor-4E in superficial and muscle invasive bladder cancer and its correlation with vascular endothelial growth factor expression and tumour progression. British Journal of Cancer 82, 161-166, 2000.

    Crick, F. On protein synthesis. Symposia of the Society for Experimental Biology 12, 138-163, 1958.

    Crick, F. Central Dogma of Molecular Biology. Nature 227, 561-563, 1970.

    Desnoyers, G., Frost, L.D., Courteau, L., Wall, M.L., and Lewis, S.M. Decreased eIF3e Expression Can Mediate Epithelial-to-Mesenchymal Transition through Activation of the TGFbeta Signaling Pathway. Molecular Cancer Research 13, 1421-1430, 2015.

    Diaz de Arce, A.J., Noderer, W.L., and Wang, C.L. Complete motif analysis of sequence requirements for translation initiation at non-AUG start codons. Nucleic Acids Research 46, 985-994, 2017.

    Dobin, A., Davis, C.A., Schlesinger, F., Drenkow, J., Zaleski, C., Jha, S., Batut, P., Chaisson, M., and Gingeras, T.R. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15-21, 2013.

    Dong, Z., and Zhang, J.-T. Initiation factor eIF3 and regulation of mRNA translation, cell growth, and cancer. Critical Reviews in Oncology/Hematology 59, 169-180, 2006.

    Duncan, C.D.S., and Mata, J. The translational landscape of fission-yeast meiosis and sporulation. Nature Structural and Molecular Biology 21, 641, 2014.

    Dunn, J.G., and Weissman, J.S. Plastid: nucleotide-resolution analysis of next-generation sequencing and genomics data. BioMed Central Genomics 17, 958, 2016.

    Edwalds-Gilbert, G. Regulation of mRNA Splicing by Signal Transduction. Nature Education 3, 43, 2010.

    Eymin, B., and Gazzeri, S. Role of cell cycle regulators in lung carcinogenesis. Cell Adhesion and Migration 4, 114-123, 2010.

    Fitzgerald, K.D., and Semler, B.L. Re-localization of cellular protein SRp20 during poliovirus infection: bridging a viral IRES to the host cell translation apparatus. Public Library of Science Pathogens 7, e1002127, 2011.

    Frankish, A., Diekhans, M., Ferreira, A.-M., Johnson, R., Jungreis, I., Loveland, J., Mudge, J.M., Sisu, C., Wright, J., Armstrong, J., Barnes, I., Berry, A., Bignell, A., Carbonell Sala, S., Chrast, J., Cunningham, F., Di Domenico, T., Donaldson, S., Fiddes, I.T., García Girón, C., Gonzalez, J.M., Grego, T., Hardy, M., Hourlier, T., Hunt, T., Izuogu, O.G., Lagarde, J., Martin, F.J., Martínez, L., Mohanan, S., Muir, P., Navarro, F.C P., Parker, A., Pei, B., Pozo, F., Ruffier, M., Schmitt, B.M., Stapleton, E., Suner, M.-M., Sycheva, I., Uszczynska-Ratajczak, B., Xu, J., Yates, A., Zerbino, D., Zhang, Y., Aken, B., Choudhary, J.S., Gerstein, M., Guigó, R., Hubbard, T.J P., Kellis, M., Paten, B., Reymond, A., Tress, M.L., and Flicek, P. GENCODE reference annotation for the human and mouse genomes. Nucleic Acids Research 47, D766-D773, 2018.

    Furic, L., Rong, L., Larsson, O., Koumakpayi, I.H., Yoshida, K., Brueschke, A., Petroulakis, E., Robichaud, N., Pollak, M., Gaboury, L.A., Pandolfi, P.P., Saad, F., and Sonenberg, N. eIF4E phosphorylation promotes tumorigenesis and is associated with prostate cancer progression. Proceedings of the National Academy of Sciences of the United States of America 107, 14134-14139, 2010.

    Gerashchenko, M.V., Lobanov, A.V., and Gladyshev, V.N. Genome-wide ribosome profiling reveals complex translational regulation in response to oxidative stress. Proceedings of the National Academy of Sciences of the United States of America 109, 17394, 2012.

    Gobet, C., and Naef, F. Ribosome profiling and dynamic regulation of translation in mammals. Current Opinion in Genetics and Development 43, 120-127, 2017.

    Grzmil, M., and Hemmings, B.A. Translation Regulation as a Therapeutic Target in Cancer. Cancer Research 72, 3891, 2012.

    Guo, H., Ingolia, N.T., Weissman, J.S., and Bartel, D.P. Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature 466, 835-840, 2010.

    Hardcastle, T.J. riboSeqR: Analysis of sequencing data from ribosome profiling experiments. R package, 2014.

    Heather, J.M., and Chain, B. The sequence of sequencers: The history of sequencing DNA. Genomics 107, 1-8, 2016.

    Hinnebusch, A.G., and Lorsch, J.R. The mechanism of eukaryotic translation initiation: new insights and challenges. Cold Spring Harbor Perspectives in Biology 4, 1-25, 2012.

    Hsieh, A.C., and Ruggero, D. Targeting eukaryotic translation initiation factor 4E (eIF4E) in cancer. Clinical Cancer Research 16, 4914-4920, 2010.

    Hu, J.C., Sherlock, G., Siegele, D.A., Aleksander, S.A., Ball, C.A., Demeter, J., Gouni, S., Holland, T.A., Karp, P.D., Lewis, J.E., Liles, N.M., McIntosh, B.K., Mi, H., Muruganujan, A., Wymore, F., and Thomas, P.D. PortEco: a resource for exploring bacterial biology through high-throughput data and analysis tools. Nucleic Acids Research 42, D677-D684, 2013.

    Hubbard, T., Barker, D., Birney, E., Cameron, G., Chen, Y., Clark, L., Cox, T., Cuff, J., Curwen, V., Down, T., Durbin, R., Eyras, E., Gilbert, J., Hammond, M., Huminiecki, L., Kasprzyk, A., Lehvaslaiho, H., Lijnzaad, P., Melsopp, C., Mongin, E., Pettett, R., Pocock, M., Potter, S., Rust, A., Schmidt, E., Searle, S., Slater, G., Smith, J., Spooner, W., Stabenau, A., Stalker, J., Stupka, E., Ureta-Vidal, A., Vastrik, I., and Clamp, M. The Ensembl genome database project. Nucleic Acids Research 30, 38-41, 2002.

    Ihaka, R., and Gentleman, R. R: A Language for Data Analysis and Graphics. Journal of Computational and Graphical Statistics 5, 299-314, 1996.

    Ingolia, N.T. Ribosome profiling: new views of translation, from single codons to genome scale. Nature Reviews Genetics 15, 205, 2014.

    Ingolia, N.T. Ribosome Footprint Profiling of Translation throughout the Genome. Cell 165, 22-33, 2016.

    Ingolia, N.T., Brar, G.A., Rouskin, S., McGeachy, A.M., and Weissman, J.S. The ribosome profiling strategy for monitoring translation in vivo by deep sequencing of ribosome-protected mRNA fragments. Nature Protocols 7, 1534, 2012.

    Ingolia, N.T., Ghaemmaghami, S., Newman, J.R.S., and Weissman, J.S. Genome-wide analysis in vivo of translation with nucleotide resolution using ribosome profiling. Science 324, 218-223, 2009.

    Jackson, R.J., Hellen, C.U.T., and Pestova, T.V. The mechanism of eukaryotic translation initiation and principles of its regulation. Nature Reviews Molecular Cell Biology 11, 113, 2010.

    Jang, S.K., Kräusslich, H.G., Nicklin, M.J., Duke, G.M., Palmenberg, A.C., and Wimmer, E. A segment of the 5' nontranslated region of encephalomyocarditis virus RNA directs internal entry of ribosomes during in vitro translation. Journal of Virology 62, 2636, 1988.

    JavanMoghadam, S., Weihua, Z., Hunt, K.K., and Keyomarsi, K. Estrogen receptor alpha is cell cycle-regulated and regulates the cell cycle in a ligand-dependent fashion. Cell Cycle 15, 1579-1590, 2016.

    Ji, Z., Song, R., Regev, A., and Struhl, K. Many lncRNAs, 5'UTRs, and pseudogenes are translated and some are likely to express functional proteins. Elife 4, e08890, 2015.

    Johannes, G., and Sarnow, P. Cap-independent polysomal association of natural mRNAs encoding c-myc, BiP, and eIF4G conferred by internal ribosome entry sites. RNA 4, 1500-1513, 1998.

    Juntawong, P., Girke, T., Bazin, J., and Bailey-Serres, J. Translational dynamics revealed by genome-wide profiling of ribosome footprints in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America 111, E203, 2014.

    Kent, W.J., Sugnet, C.W., Furey, T.S., Roskin, K.M., Pringle, T.H., Zahler, A.M., and Haussler, D. The human genome browser at UCSC. Genome Research 12, 996-1006, 2002.

    Kim, D., Pertea, G., Trapnell, C., Pimentel, H., Kelley, R., and Salzberg, S.L. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biology 14, R36, 2013.

    King, Helen A., Cobbold, Laura C., and Willis, Anne E. The role of IRES trans-acting factors in regulating translation initiation. Biochemical Society Transactions 38, 1581, 2010.

    Kondo, M., Eggerston, G., Eisenstadt, J., and Lengyel, P. Ribosome Formation from Subunits: Dependence on Formylmethionyl-transfer RNA in Extracts from E. coli. Nature 220, 368-371, 1968.

    Kozak, M. Context effects and inefficient initiation at non-AUG codons in eucaryotic cell-free translation systems. Molecular and Cellular Biology 9, 5073, 1989.

    Langmead, B., Trapnell, C., Pop, M., and Salzberg, S.L. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biology 10, R25, 2009.

    Larsson, O., Sonenberg, N., and Nadon, R. anota: analysis of differential translation in genome-wide studies. Bioinformatics 27, 1440-1441, 2011.

    Legendre, R., Baudin-Baillieu, A., Hatin, I., and Namy, O. RiboTools: a Galaxy toolbox for qualitative ribosome profiling analysis. Bioinformatics 31, 2586-2588, 2015.

    Lei, L., Shi, J., Chen, J., Zhang, M., Sun, S., Xie, S., Li, X., Zeng, B., Peng, L., Hauck, A., Zhao, H., Song, W., Fan, Z., and Lai, J. Ribosome profiling reveals dynamic translational landscape in maize seedlings under drought stress. The Plant Journal 84, 1206-1218, 2015.

    Li, B., and Dewey, C.N. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BioMed Central Bioinformatics 12, 323-323, 2011.

    Li, B.D.L., Liu, L., Dawson, M., and De Benedetti, A. Overexpression of eukaryotic initiation factor 4E (eIF4E) in breast carcinoma. Cancer 79, 2385-2390, 1997.

    Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G., Abecasis, G., Durbin, R., and Genome Project Data Processing, S. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078-2079, 2009.

    Li, Z., Lin, S., Jiang, T., Wang, J., Lu, H., Tang, H., Teng, M., and Fan, J. Overexpression of eIF3e is correlated with colon tumor development and poor prognosis. International Journal of Clinical and Experimental Pathology 7, 6462-6474, 2014.

    Lim, C., and Allada, R. Emerging roles for post-transcriptional regulation in circadian clocks. Nature Neuroscience 16, 1544-1550, 2013.

    Liu, M.-J., Wu, S.-H., Wu, J.-F., Lin, W.-D., Wu, Y.-C., Tsai, T.-Y., Tsai, H.-L., and Wu, S.-H. Translational Landscape of Photomorphogenic Arabidopsis. The Plant Cell 25, 3699, 2013.

    Lundberg, E., Fagerberg, L., Klevebring, D., Matic, I., Geiger, T., Cox, J., Algenas, C., Lundeberg, J., Mann, M., and Uhlen, M. Defining the transcriptome and proteome in three functionally different human cell lines. Molecular Systems Biology 6, 450, 2010.

    Maier, T., Guell, M., and Serrano, L. Correlation of mRNA and protein in complex biological samples. Federation of European Biochemical Societies Letters 583, 3966-3973, 2009.

    Malone, B., Atanassov, I., Aeschimann, F., Li, X., Grosshans, H., and Dieterich, C. Bayesian prediction of RNA translation from ribosome profiling. Nucleic Acids Res 45, 2960-2972, 2017.

    Mardis, E.R. Next-Generation DNA Sequencing Methods. Annual Review of Genomics and Human Genetics 9, 387-402, 2008.

    Martin, M. Cutadapt Removes Adapter Sequences From High-Throughput Sequencing Reads. The European Molecular Biology Network 17, 10-12, 2011.

    Michel, A.M., Fox, G., M. Kiran, A., De Bo, C., O’Connor, P.B.F., Heaphy, S.M., Mullan, J.P.A., Donohue, C.A., Higgins, D.G., and Baranov, P.V. GWIPS-viz: development of a ribo-seq genome browser. Nucleic Acids Research 42, D859-D864, 2013.

    Michel, A.M., Mullan, J.P.A., Velayudhan, V., O'Connor, P.B.F., Donohue, C.A., and Baranov, P.V. RiboGalaxy: A browser based platform for the alignment, analysis and visualization of ribosome profiling data. RNA Biology 13, 316-319, 2016.

    Mitchell, Sarah F., and Parker, R. Modifications on Translation Initiation. Cell 163, 796-798, 2015.

    Mokrejs, M., Masek, T., Vopálensky, V., Hlubucek, P., Delbos, P., and Pospísek, M. IRESite--a tool for the examination of viral and cellular internal ribosome entry sites. Nucleic Acids Research 38, D131-D136, 2010.

    O’Connor, P.B.F., Andreev, D.E., and Baranov, P.V. Comparative survey of the relative impact of mRNA features on local ribosome profiling read density. Nature Communications 7, 12915, 2016.

    Olexiouk, V., Crappé, J., Verbruggen, S., Verhegen, K., Martens, L., and Menschaert, G. sORFs.org: a repository of small ORFs identified by ribosome profiling. Nucleic Acids Research 44, D324-D329, 2015.

    Oliphant, T.E. Python for Scientific Computing. Computing in Science and Engineering 9, 10-20, 2007.

    Olshen, A.B., Hsieh, A.C., Stumpf, C.R., Olshen, R.A., Ruggero, D., and Taylor, B.S. Assessing gene-level translational control from ribosome profiling. Bioinformatics 29, 2995-3002, 2013.

    Ozsolak, F., and Milos, P.M. RNA sequencing: advances, challenges and opportunities. Nature reviews Genetics 12, 87-98, 2011.

    Park, J.-E., Yi, H., Kim, Y., Chang, H., and Kim, V.N. Regulation of Poly(A) Tail and Translation during the Somatic Cell Cycle. Molecular Cell 62, 462-471, 2016a.

    Park, S.-M., Choi, E.-Y., Bae, M., Kim, S., Park, J.B., Yoo, H., Choi, J.K., Kim, Y.-J., Lee, S.-H., and Kim, I.-H. Histone variant H3F3A promotes lung cancer cell migration through intronic regulation. Nature Communications 7, 12914, 2016b.

    Patro, R., Mount, S.M., and Kingsford, C. Sailfish enables alignment-free isoform quantification from RNA-seq reads using lightweight algorithms. Nature Biotechnology 32, 462-464, 2014.

    Peabody, D.S. Translation initiation at non-AUG triplets in mammalian cells. Journal of Biological Chemistry 264, 5031-5035, 1989.

    Pelletier, J., and Sonenberg, N. Internal initiation of translation of eukaryotic mRNA directed by a sequence derived from poliovirus RNA. Nature 334, 320-325, 1988.

    Popa, A., Lebrigand, K., Paquet, A., Nottet, N., Robbe-Sermesant, K., Waldmann, R., and Barbry, P. RiboProfiling: a Bioconductor package for standard Ribo-seq pipeline processing. F1000Research 5, 1-12, 2016.

    Pruitt, K.D., Tatusova, T., and Maglott, D.R. NCBI reference sequences (RefSeq): a curated non-redundant sequence database of genomes, transcripts and proteins. Nucleic Acids Research 35, D61-65, 2007.

    Pyronnet, S., and Sonenberg, N. Cell-cycle-dependent translational control. Current Opinion in Genetics and Development 11, 13-18, 2001.

    Ritchie, M.E., Phipson, B., Wu, D., Hu, Y., Law, C.W., Shi, W., and Smyth, G.K. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Research 43, e47, 2015.

    Robinson, J.T., Thorvaldsdóttir, H., Winckler, W., Guttman, M., Lander, E.S., Getz, G., and Mesirov, J.P. Integrative genomics viewer. Nature Biotechnology 29, 24, 2011.

    Robinson, M.D., McCarthy, D.J., and Smyth, G.K. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139-140, 2010.

    Sanger, F., Coulson, A.R., Barrell, B.G., Smith, A.J.H., and Roe, B.A. Cloning in single-stranded bacteriophage as an aid to rapid DNA sequencing. Journal of Molecular Biology 143, 161-178, 1980.

    Sanger, F., Nicklen, S., and Coulson, A.R. DNA sequencing with chain-terminating inhibitors. Proceedings of the National Academy of Sciences of the United States of America 74, 5463-5467, 1977.

    Schueren, F., and Thoms, S. Functional Translational Readthrough: A Systems Biology Perspective. Public Library of Science Genetics 12, e1006196, 2016.

    Shalgi, R., Hurt, Jessica A., Krykbaeva, I., Taipale, M., Lindquist, S., and Burge, Christopher B. Widespread Regulation of Translation by Elongation Pausing in Heat Shock. Molecular Cell 49, 439-452, 2013.

    Spriggs, K.A., Bushell, M., and Willis, A.E. Translational Regulation of Gene Expression during Conditions of Cell Stress. Molecular Cell 40, 228-237, 2010.

    Spriggs, K.A., Stoneley, M., Bushell, M., and Willis, A.E. Re-programming of translation following cell stress allows IRES-mediated translation to predominate. Biology of the Cell 100, 27-38, 2008.

    Su, Z., Fang, H., Hong, H., Shi, L., Zhang, W., Zhang, W., Zhang, Y., Dong, Z., Lancashire, L.J., Bessarabova, M., Yang, X., Ning, B., Gong, B., Meehan, J., Xu, J., Ge, W., Perkins, R., Fischer, M., and Tong, W. An investigation of biomarkers derived from legacy microarray data for their utility in the RNA-seq era. Genome Biology 15, 523, 2014.

    Sunavala-Dossabhoy, G., Palaniyandi, S., Clark, C., Nathan, C.O., Abreo, F.W., and Caldito, G. Analysis of eIF4E and 4EBP1 mRNAs in head and neck cancer. Laryngoscope 121, 2136-2141, 2011.

    Temin, H.M. Reverse transcription in the eukaryotic genome: retroviruses, pararetroviruses, retrotransposons, and retrotranscripts. Molecular Biology and Evolution 2, 455-468, 1985.

    Temin, H.M., and Mizutani, S. Viral RNA-dependent DNA Polymerase: RNA-dependent DNA Polymerase in Virions of Rous Sarcoma Virus. Nature 226, 1211-1213, 1970.

    Trapnell, C., Pachter, L., and Salzberg, S.L. TopHat: discovering splice junctions with RNA-Seq. Bioinformatics 25, 1105-1111, 2009.

    Vanderperre, B., Lucier, J.-F., and Roucou, X. HAltORF: a database of predicted out-of-frame alternative open reading frames in human. Database 2012, 1-5, 2012.

    Wan, J., and Qian, S.-B. TISdb: a database for alternative translation initiation in mammalian cells. Nucleic Acids Research 42, D845-D850, 2013.

    Wang, H., McManus, J., and Kingsford, C. Isoform-level ribosome occupancy estimation guided by transcript abundance with Ribomap. Bioinformatics 32, 1880-1882, 2016.

    Wang, H., Wang, Y., and Xie, Z. Computational resources for ribosome profiling: from database to Web server and software. Briefings in Bioinformatics 20, 144-155, 2017.

    Wang, R., Geng, J., Wang, J.-h., Chu, X.-y., Geng, H.-c., and Chen, L.-b. Overexpression of eukaryotic initiation factor 4E (eIF4E) and its clinical significance in lung adenocarcinoma. Lung Cancer 66, 237-244, 2009a.

    Wang, Z., Gerstein, M., and Snyder, M. RNA-Seq: a revolutionary tool for transcriptomics. Nature Reviews Genetics 10, 57, 2009b.

    Wei, I.H., Shi, Y., Jiang, H., Kumar-Sinha, C., and Chinnaiyan, A.M. RNA-Seq Accurately Identifies Cancer Biomarker Signatures to Distinguish Tissue of Origin. Neoplasia 16, 918-927, 2014.

    Wu, W.-S., Jiang, Y.-X., Chang, J.-W., Chu, Y.-H., Chiu, Y.-H., Tsao, Y.-H., Nordling, T.E.M., Tseng, Y.-Y., and Tseng, J.T. HRPDviewer: human ribosome profiling data viewer. Database 2018, 2018.

    Xiao, Z., Zou, Q., Liu, Y., and Yang, X. Genome-wide assessment of differential translations with ribosome profiling data. Nature Communications 7, 11194, 2016.

    Xie, S.-Q., Nie, P., Wang, Y., Wang, H., Li, H., Yang, Z., Liu, Y., Ren, J., and Xie, Z. RPFdb: a database for genome wide information of translated mRNA generated from ribosome profiling. Nucleic Acids Research 44, D254-D258, 2015.

    Xu, T., Zong, Y., Peng, L., Kong, S., Zhou, M., Zou, J., Liu, J., Miao, R., Sun, X., and Li, L. Overexpression of eIF4E in colorectal cancer patients is associated with liver metastasis. OncoTargets and Therapy 9, 815-822, 2016.

    Yang, H.D., Kim, P.-J., Eun, J.W., Shen, Q., Kim, H.S., Shin, W.C., Ahn, Y.M., Park, W.S., Lee, J.Y., and Nam, S.W. Oncogenic potential of histone-variant H2A.Z.1 and its regulatory role in cell cycle and epithelial-mesenchymal transition in liver cancer. Oncotarget 7, 11412-11423, 2016.

    下載圖示 校內:2024-07-24公開
    校外:2024-07-24公開
    QR CODE