簡易檢索 / 詳目顯示

研究生: 廖明威
Liao, Ming-Wei
論文名稱: 反應式磁控濺鍍氧化鈦(TiOx)薄膜之微結構與光激發螢光性質研究
A Study on Microstructure and Photoluminescence Properties of Titanium Oxide (TiOx) Thin Films by Reactive Magnetron Sputtering
指導教授: 鍾震桂
Chung, Chen-Kuei
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 92
中文關鍵詞: 薄膜濺鍍氧化鈦光激發螢光
外文關鍵詞: thin film, sputtering, titanium oxide, photoluminescence
相關次數: 點閱:74下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗使用直流反應式磁控濺鍍系統在100到200 W鈦靶功率以及3~15%氧氣流率(FO2% = FO2 / (FO2+FAr) × 100%)下將氧化鈦(TiOx)薄膜沉積於矽(100)基板上,並且在快速退火爐(RTA)中進行350~750 °C兩分鐘的大氣退火。
    結果分析方面,分別使用掃描式電子顯微鏡(SEM)、能量散光譜儀(EDS)、低掠角X光繞射儀(GIXRD)、拉曼光譜(Raman)、以及光激發螢光光譜(photoluminescence, PL)對初鍍膜以及退火後之TiOx薄膜的表面形貌、化學組成、材料結構、鍵結行為、以及發光行為進行分析研究。
    由GIXRD圖以及拉曼光譜顯示出的微弱訊號可得知,所有初沉積的TiOx薄膜在退火前皆為非晶結構。相較之下,在經過550~750 °C RTA退火後,在GIXRD圖以及拉曼光譜中則出現明顯的Anatase與Rutile結晶相的波峰訊號。當退火前的TiOx薄膜的化學計量值x介於1.57到1.97之間時,在經過750 °C RTA退火後可以發現到Anatase與Rutile的混合相,而x大於1.97與x小於1.57的試片退火後則分別出現純Anatase相與純Rutile相。
    退火過後的TiOx薄膜在PL光譜中顯示出極寬的波峰訊號,位置落在可見光的區域範圍內,使用100 W鈦靶功率及3 FO2%濺鍍而成的TiOx薄膜在750 °C退火後的PL波峰訊號可被擬合成兩個高斯波峰,位置在~486 nm (2.55 eV)以及~588 nm (2.11 eV),這兩個波峰訊號分別來自Rutile 及Anatase相的氧缺陷所造成的深層發光,純Anatase相的PL光譜的波峰訊號則是在550 nm附近。此外,PL的訊號強度將與不同氧氣流率及退火溫度下造成的Rutile 及Anatase相變化有關。

    Titanium oxide (TiOx) thin films were deposited on the Si(100) substrates by direct-current reactive magnetron sputtering at 100~200 W Ti-target power and 3~15 % oxygen flow ratios (FO2% = FO2 / (FO2+FAr) × 100%), and then annealed by rapid thermal annealing (RTA) at 350~750 °C for 2 min in atmosphere.
    The morphology, chemical composition, structure, bonding and luminescence behaviors of the as-deposited and annealed TiOx thin films were analyzed by scanning electron microscopy (SEM), energy dispersive spectrometry (EDS), grazing incidence X-ray diffraction (GIXRD), Raman spectroscopy and photoluminescence (PL) spectroscopy, respectively.
    The as-deposited TiOx films were amorphous from GIXRD and showed weak Raman intensity. In contrast, the distinct crystalline peaks of anatase or rutile phases were detected after RTA at 550~750 °C from both GIXRD and Raman spectra. A mixture of anatase and rutile phases was obtained by RTA at 750 °C when the stoichiometry x of as-deposited TiOx films is between 1.57 and 1.97. The pure anatase and pure rutile phase were detected in x>1.97 and x<1.57 specimens after RTA, respectively.
    The PL spectra of all post-annealed TiOx films showed a broad peak in visible light region. The PL peak of TiOx film at 100 W Ti-target power and 3 FO2% at 750 °C annealing can be fitted into two Gaussian peaks at ~486 nm (2.55 eV) and ~588 nm (2.11 eV) which were attributed to deep-level emissions of oxygen vacancies in the rutile and anatase phases, respectively. The peak around 550 nm was observed at pure anatase phase. The variation of intensity of PL peaks is concerned with the formation of rutile and anatase phases at different FO2% and annealing temperatures.

    摘 要 I Abstract III 致 謝 V 目 錄 VII 表目錄 IX 圖目錄 X 第一章 緒論 1 1-1 前言 1 1-2 研究動機與目的 3 第二章 文獻回顧與理論基礎 6 2-1 二氧化鈦材料簡介 6 2-2 二氧化鈦之研究發展 8 2-3 反應式磁控濺鍍二氧化鈦薄膜 15 2-4 光激發螢光原理 20 第三章 實驗方法與步驟 23 3-1 實驗流程 23 3-2 實驗材料 27 3-3 實驗儀器 28 3-3-1反應式磁控濺鍍系統 (Reactive Magnetron Sputtering system) 28 3-3-2快速退火爐 (Rapid thermal annealing system, RTA) 31 3-3-3超微細表面測定儀 (Microfigure Measuring Instrument, α-Step) 33 3-3-4低掠角X光繞射 (Glancing Incident Angle X-Ray Diffraction) 34 3-3-5場發射掃描式電子顯微鏡 (Field Emission Scanning Electron Microscopy) 36 3-3-6能量散佈光譜議 (Energy Dispersive Spectroscopy, EDS) 38 3-3-7拉曼光譜 (Raman spectroscopy) 39 3-3-8光激發螢光光譜 (photoluminescence spectroscopy) 40 第四章 實驗結果與討論 42 4-1 室溫下沉積TiOx薄膜之基本性質 42 4-1-1薄膜沉積速率 42 4-1-2薄膜電阻率 46 4-1-3 GIXRD微結構分析 49 4-1-4 SEM表面形貌分析 50 4-1-5化學成分分析 53 4-2 退火後之TiOx薄膜 55 4-2-1退火溫度對於TiOx薄膜微結構之影響 55 4-2-2濺鍍參數對於退火後TiOx薄膜微結構之影響 59 4-2-3退火後TiOx薄膜之表面形貌 65 4-3 TiOx薄膜之光激發螢光性質 70 4-3-1退火溫度對於光激發螢光之影響 70 4-3-2微結構對於光激發螢光之影響 72 第五章 結論與未來展望 78 5-1結論 78 5-2 本文貢獻 81 5-3未來展望 82 參考文獻 84 自 述 92

    [1]Masaaki Kitano, Masaya Matsuoka, Michio Ueshima, Masakazu Anpo, “Recent developments in titanium oxide-based photocatalysts”, Applied Catalysis A: General 325 1–14 (2007).
    [2]O’Regan, and Grtzel, “A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films”, Nature 353, p. 737 (1991).
    [3]Hongfu Sun, Chengyu Wang, Shihong Pang, Xiping Li, Ying Tao, Huajuan Tang, Ming Liu, “Photocatalytic TiO2 films prepared by chemical vapor deposition at atmosphere pressure”, Journal of Non-Crystalline Solids 354 1440–1443 (2008).
    [4]Masahiro Terashima, Narumi Inoue, Shigeru Kashiwabara, Ryozo Fujimoto, “Photocatalytic TiO2 thin-films deposited by a pulsed laser deposition technique”, Applied Surface Science 169-170 535–538 (2001).
    [5]Lianchao Sun, Ping Hou, “Spectroscopic ellipsometry study on e-beam deposited titanium dioxide films”, Thin Solid Films 455–456 525–529 (2004).
    [6]K. Pomoni, A. Vomvas, Chr. Trapalis, “Electrical conductivity and photoconductivity studies of TiO2 sol–gel thin films and the effect of N-doping”, Journal of Non-Crystalline Solids 354 4448–4457 (2008).
    [7]C. Natarajan, N. Fukunaga, G. Nogami,“Titanium dioxide thin film deposited by spray pyrolysis of aqueous solution”, Thin Solid Films 322 6–8 (1998).
    [8]S. Boukrouh, R. Bensaha, S. Bourgeois, E. Finot, M.C. Marco de Lucas, “Reactive direct current magnetron sputtered TiO2 thin films with amorphous to crystalline structures”, Thin Solid Films 516 6353–6358 (2008).
    [9]Lei Zhao, Mandi Han, Jianshe Lian, “Photocatalytic activity of TiO2 films with mixed anatase and rutile structures prepared by pulsed laser deposition”, Thin Solid Films 516 3394–3398 (2008).
    [10]Terufumi Okumura, Yasuhiro Kinoshita, Hiroaki Uchiyama, Hiroaki Imai, “Photoluminescence of nitrogen-doped anatase”, Materials Chemistry and Physics 111 486–490 (2008).
    [11]L. Kavan, M. Gra1tzel, S. E. Gilbert, C. Klemenz, and H. J. Scheel, “Electrochemical and Photoelectrochemical Investigation of Single-Crystal Anatase”, J. Am. Chem. Soc. 118, 6716–6723 (1996).
    [12]D Reyes-Coronado, G Rodr´ıguez-Gattorno, M E Espinosa-Pesqueira, C Cab, R de Coss and G Oskam, “Phase-pure TiO2 nanoparticles: anatase, brookite and rutile”, Nanotechnology 19 145605 10pp (2008).
    [13]Per Kofstad, “Nonstoichiometry, diffusion, and electrical conductivity in binary metal oxides”, John Wiley & Sons, Inc., New York (1972).
    [14]U. Diebold. “The surface science of titanium dioxide”, Surf. Sci. Reports, 48, 53 (2003).
    [15]A. Fujishima, K. Honda, “Electrochemical Photolysis of Water at a Semiconductor”, Nature, Vol. 238, p.37 (1972).
    [16]A.J. Bard, “Photoelectrochemistry” Science 207 139 (1980).
    [17]Masaaki Kitano, Masaya Matsuoka, Michio Ueshima, Masakazu Anpo, “Recent developments in titanium oxide-based photocatalysts” Applied Catalysis A: General 325 1–14 (2007).
    [18]S. Sato, J.M. White, “Photodecomposition of Water Over Pt/TiO2 Catalysts”, Chem. Phys. Lett. Vol.72 p.83 (1980).
    [19]F.T. Wagner, G.A. Somorjai, Nature 285 “Photocatalytic hydrogen production from water on Pt-free SrTiO3 in alkali hydroxide solutions” 559 (1980).
    [20]Anpo M.; Takeuchi M.; Dohshi S.; Eura T., “Preparation of Titanium-Silicon Binary Oxide Thin Film Photocatalysts by an Ionized Cluster Beam Deposition Method. Their Photocatalytic Activity and Photoinduced Super-Hydrophilicity,” Journal of Physical Chemistry B, 107, 14278–14282 (2003).
    [21]Choi H, Stathatos E, Dionysiou DD, “Sol-gel preparation of mesoporous photocatalytic TiO2 films and TiO2/Al2O3 composite membranes for environmental applications” Applied Catalysis B-environmental Vol. 63 pp.60–67 (2006).
    [22]Moon SC, Mametsuka H, Suzuki E, Nakahara Y, “Characterization of titanium-boron binary oxides and their photocatalytic activity for stoichiometric decomposition of water”, Chem. Lett. 117 (1998).
    [23]M. Anpo, T. Shima, S. Kodama, Y. Kubokawa, “Photocatalytic Hydrogenation of CH3CCH with H2O on Small-Particle TiO2: Size Quantization Effects and Reaction Intermediates”, J. Phys. Chem. 91 4305 (1987).
    [24]M. Anpo, H. Nakaya, S. Kodama, Y. Kubokawa, K. Domen, T. Onishi, J.Phys. “Photocatalysis over binary metal-oxides: Enhancement of the photocatalytic activity of TiO2 in titanium-silicon oxides”, Chem. 90 1633 (1986).
    [25]M. Anpo, T. Kawamura, S. Kodama, K. Maruya, T. Onishi, J. “Photocatalysis on titanium-aluminum binary metal oxides: enhancement of the photocatalytic activity of titania species”, Phys. Chem. 92 438 (1988).
    [26]Sze, Simon M., Semiconductor devices, physics and technology, 2nd ed. (2002).
    [27]T. Kajiwara, K. Hashimoto, T. Kawai, T. Sakata, “Dynamics of luminescence from Ru(bpy)3Cl2 adsorbed on semiconductor surfaces”, J. Phys. Chem. 86 4516–4522 (1982).
    [28]K. Hashimoto, T. Kawai, T. Sakata, “Efficient hydro gen-production from water by visible-light excitation of fluorescein-type dyes in the presence of a redox catalyst and a reducing agent”, Chem. Lett. 709 (1983).
    [29]T. Shimizu, T. Iyoda, Y. Koide, “An advanced visible-light-induced water reduction with dye-sensitized semiconductor powder catalyst”, J. Am. Chem. Soc. 107 35 (1985).
    [30]M.K. Nazeeruddin, F.D. Angelis, S. Fantacci, A. Selloni, G. Viscardi, P.Liska, S. Ito, B. Takeru, M. Gratzel, “Combined Experimental and DFT-TDDFT Computational Study of Photoelectrochemical Cell Ruthenium Sensitizers”, J. Am. Chem. Soc. 127 16835 (2005).
    [31]A.J.McEvoy, Practical Handbook of Photovoltaics: Fundamentals and Applications, page.468.
    [32]M.I. Litter, Appl. “Heterogeneous photocatalysis transition metal ions in photocatalytic systems”, Catal. B: Env.23 p.89 (1999).
    [33]A. Fuerte, M.D. Herna´ndez-Alonso, A.J. Maira, A. Martı´nez-Arias, M. Ferna´ndez-Garcı´a, J.C. Conesa, J. Soria, “Visible light-activated nanosized doped-TiO2 photocatalysts”, Chem. Commun. 2718 (2001).
    [34]R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga, “Visible-Light Photocatalysis in Nitrogen-Doped Titanium Oxides”, SCIENCE Vol. 293 pp.269–271 (2001).
    [35]O. Diwald, T.L. Thompson, T. Zubkov, E.G. Goralski, S.D. Walck, J.T. Yates Jr., “The Effect of Nitrogen Ion Implantation on the Photoactivity of TiO2 Rutile Single Crystals”, J. Phys. Chem. B 108 6004 (2004).
    [36]Y. Nakano, T. Morikawa, T. Ohwaki, Y. Taga, “Deep-level optical spectroscopy investigation of N-doped TiO2 films”, Appl. Phys. Lett. 86 132104 (2005).
    [37]A. Ghicov, J.M. Macak, H. Tsuchiya, J. Kunze, V. Haeublein, L. Frey, P. Schmuki, “Ion Implantation and Annealing for an Efficient N-Doping of TiO2 Nanotubes”, Nano Lett. 6 1080 (2006).
    [38]H. Li, J. Li, Y. Huo, “Highly Active TiO2N Photocatalysts Prepared by Treating TiO2 Precursors in NH3/Ethanol Fluid under Supercritical Conditions”, J. Phys. Chem. B 110 1559 (2006).
    [39]H. Irie, Y.Watanabe, K. Hashimoto, “Nitrogen-Concentration Dependence on Photocatalytic Activity of TiO2-xNx Powders”, J. Phys. Chem. B 107 5483 (2003).
    [40]N. Serpone, “Is the Band Gap of Pristine TiO2 Narrowed by Anion- and Cation-Doping of Titanium Dioxide in Second-Generation Photocatalysts”, J. Phys. Chem. B 110 24287 (2006).
    [41]R. Wang, K. Hashimoto, A. Fujishima, M. Chikuni, E. Kojima, A. Kitamura, M. Shimohigoshi, T. Watanabe, “Light-induced amphiphilic surfaces”, Nature 431 388 (1997).
    [42]M. Takeuchi, S. Dohshi, T. Eura, M. Anpo, “Mechanism of Photoinduced Superhydrophilicity on the TiO2 Photocatalyst Surface”, J. Phys. Chem. B 107 14278 (2003).
    [43]G. San Vicente, A. Morales, M.T. Gutie´rrez, “Preparation and characterization of sol-gel TiO2 antireflective coatings for silicon”, Thin Solid Films 403–404 335–338 (2002).
    [44]Z.M. Qi, K. Itoh, M. Murabayash, C.R. Lavers, “Characterization and application of a channel- planar composite waveguide” Opt. Lett. 25 (19) (2000)
    [45]K. Zakrzewska, “Gas sensing mechanism of TiO2-based thin films”, Vacuum 74 (2) 335 (2004).
    [46]http://elearning.stut.edu.tw/m_facture/Nanotech/Web/ch3.htm
    [47]N. M. Hwang, D. Y. Yoon, “Driving force for deposition in the chemical vapour deposition process” Journal of materials science letters 13 1437–1439 (1994).
    [48]Mark C. Barnes, Andrea R. Gerson, Sunil Kumar, Nong-Moon Hwang, “The mechanism of TiO2 deposition by direct current magnetron reactive sputtering” Thin Solid Films 446 29–36 (2004).
    [49]Wenjie Zhang, Ying Li, Shenglong Zhu, Fuhui Wang, “Influence of argon flow rate on TiO2 photocatalyst filmdeposited by dc reactive magnetron sputtering” Surface and Coatings Technology 182 192–198 (2004).
    [50]Chen Yang, Huiqing Fan, Yingxue Xi, Jin Chen, Zhuo Li, “Effects of depositing temperatures on structure and optical properties of TiO2 film deposited by ion beam assisted electron beam evaporation” Appl. Surf. Sci. vol.254(9) 2685–2689 (2007).
    [51]Nicolas Martin, Dominique Baretti, Christophe Rousselot, Jean-Yves Rauch, “The effect of bias power on some properties of titanium and titanium oxide films prepared by r.f. magnetron sputtering”, Surface and Coatings Technology 107 172–182 (1998).
    [52]Li-Jian Meng, V. Teixeira, H.N. Cui, Frank Placido, Z. Xu, M.P. dos Santos “A study of the optical properties of titanium oxide films prepared by dc reactive magnetron sputtering” Applied Surface Science 252 7970–7974 (2006).
    [53]K. Eufinger, D. Poelman, H. Poelman, R. De Gryse, G.B. Marin, “Photocatalytic activity of dc magnetron sputter deposited amorphous TiO2 thin films” Applied Surface Science 254 148–152 (2007).
    [54]M.M. GoHmez, J. Lu, E. Olsson, A. Hagfeldt, C.G. Granqvist, Solar Energy Materials & Solar Cells 64 385–392 (2000).
    [55]M.M. GoHmez, N.Beermannb, J.Lu, E.Olsson, A.Hagfeldt, G.A. Niklasson, C.G.Granqvist, Solar Energy Materials & Solar Cells 76 37–56 (2003).
    [56]M. Grazel, Heterogeneous Photochemical Electron Transfer, XRC Press, Inc. (1989).
    [57]Tang H, Berger H, Schmid PE, Levy F, Burri G, “Photoluminescence in TiO2 anatase single crystals” Solid State Communications, vol. 87, issue 9, pp. 847–850 (1993).
    [58]Kan Fujihara, Shinobu Izumi, Teruhisa Ohno, Michio Matsumura, “Time-resolved photoluminescence of particulate TiO2 photocatalysts suspended in aqueous solutions” Journal of Photochemistry and Photobiology A: Chemistry 132 99–104 (2000).
    [59]Baoshun Liu, Liping Wen, Xiujian Zhao, “The photoluminescence spectroscopic study of anatase TiO2 prepared by magnetron sputtering” Materials Chemistry and Physics 106 350–353 (2007).
    [60]Ya-Qi Hou, Da-Ming Zhuang, Gong Zhang, Ming Zhao, Min-Sheng Wu, “Influence of annealing temperature on the properties of titanium oxide thin film” Applied Surface Science 218 97–105 (2003).
    [61]Sung-Mao Chiu, Zhi-Sheng Chen, Kuo-Yuan Yang, Yu-Lung Hsu, Dershin Gan, “Photocatalytic activity of doped TiO2 coatings prepared by sputtering deposition” Journal of Materials Processing Technology 192–193 60–67 (2007).
    [62]J.C. Campuzano, A. Kaminski, H. Fretwella, J. Mesota, T. Sato, T. Takahashi, M. Norman, M. Randeria, K. Kadowaki, D. Hinks, “The role of angle-resolved photoemission in understanding the high temperature superconductors”, Journal of Physics and Chemistry of Solids 62 35–39 (2001).
    [63]Ke-Rong Zhu, Ming-Sheng Zhang, Qiang Chen, Zhen Yin, “Size and phonon-confinement effects on low-frequency Raman mode of anatase TiO2 nanocrystal” Physics Letters A 340 220–227 (2005).
    [64]S. Livraghi, M.C. Paganini, E. Giamello, A. Selloni, C. DiValentin, G. Pacchioni, “Origin of photoactivity of nitrogen-doped titanium dioxide under visible light”, J. Am. Chem. Soc. 128 15666–15671 (2006).
    [65]M.A. Henderson, W.S. Epling, C.H.F. Peden, C.L. Perkins, “Insights into photoexcited electron scavenging processes on TiO2 obtained from studies of the reaction of O2 with OH groups adsorbed at electronic defects on TiO2(1 1 0)”, J. Phys. Chem. B 107 534–545 (2003).
    [66]T. Sekiy, S. Kamei, S. Kurita, “Luminescence of anatase TiO2 single crystals annealed in oxygen atmosphere” Journal of Luminescence 87-89 1140-1142 (2000).

    下載圖示 校內:2012-07-29公開
    校外:2019-07-29公開
    QR CODE