簡易檢索 / 詳目顯示

研究生: 陳毅
Chen, Yi
論文名稱: 以創新的低耗能設計捕捉溼氣
A novel design for moisture harvesting using low energy consumption
指導教授: 楊瑞珍
Yang, Ruey-Jen
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 53
中文關鍵詞: 大氣取水水凝膠膜輻射熱露點取水綠色能源
外文關鍵詞: atmospheric water harvesting, hydrogel films, radiant heat, dew point water abstraction, green energy
相關次數: 點閱:65下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 水資源匱乏問題已困擾社會大眾多年,尤其在部分乾燥地帶甚是嚴重,然而這些地方因為遠離河川、湖泊,又受地形與氣候影響,使得人均可用水資源遠低於其他地方。大氣取水為一項具有高潛力的取水辦法,透過從空氣中擷取水分出來,解決乾燥地帶缺水的問題。本研究運用超吸水薄膜並設計機構來執行大氣取水,以薄膜吸收空氣中的水氣,並利用太陽能使其再生,將釋放的水氣用於提濃機構內部,讓機構能於冷卻端冷凝出水,將這些水分蒐集起來即可使用。研究選擇具有最佳吸水量與速度的水凝膠膜,以輻射熱的原理吸收太陽能用於加熱,整體過程中消耗的能源為綠色能源,對於地球本身無任何消耗,因此可視同此機構具有低耗能取水的特點,在能源與取水的比較上優於海水淡化等其他取水技術。在本文中所使用的機構能夠0.54 Wh取得0.205 g的水,甚至能在無耗能的情況下取得0.124 g的水。在未來若能增加薄膜的量或是提升冷凝效率即可獲得更多的水分,讓大氣取水的取水量上升,解決乾燥地帶缺水可用的問題。

    The scarcity of water resources has problemed society for many years, especially in some arid regions. However, in these areas, due to their distance from rivers and lakes and the influence of terrain and climate, per capita available water resources are much lower than in other places. Atmospheric water harvesting is a highly promising method to obtain water, where water is captured from the air to address water scarcity in arid regions. This study applies super hygroscopic polymer films and a designed device to execute atmospheric water harvesting. The film absorbs moisture from the air and regenerates with solar power. The released water vapor is utilized to enhance water vapor concentration within the system, subsequently condensing water on the cooling side and facilitating collection. The study selects hydrogel films with optimal water absorption capacity and speed. Solar energy from radiation is selected to heat the films, causing no depletion of the Earth's resources. So, this device can be considered as having the feature of collecting water with low energy consumption. Compared to other water extraction technologies like seawater desalination, it has a better cost-performance ratio between energy usage and water absorption. In this study, the device used was able to collect 0.205 g of water while consuming 0.54 Wh of energy, and even 0.124 g of water with no energy consumption. In the future, it is possible to obtain more water through atmospheric water harvesting by either increasing the number of films or improving condensation efficiency, and this could help address water scarcity issues in arid regions.

    摘要I 誌謝X 目錄XI 表目錄XIII 圖目錄XIV 縮寫說明XIX 第1章 緒論1 1.1 簡介1 1.2 大氣取水(AWH)3 1.3 吸溼材料5 1.4 除溼方法9 1.5 研究動機與目的13 第2章 原理14 2.1 水凝膠膜的吸附14 2.2 輻射熱能15 2.3 露點提濃取水17 第3章 材料與方法19 3.1 使用儀器19 3.2 實驗材料25 3.3 超吸水薄膜(SHPFs)26 3.4 機構設計28 3.5 測量方法33 第4章 結果與討論35 4.1 SHPFs 測量與分析35 4.2 碳黑噴漆吸散熱實驗37 4.3 冷卻端疏水噴霧實驗38 4.4 機構的吸脫附循環實驗40 4.5 不同耗能的機構實驗45 第5章 結論與展望48 5.1 結論48 5.2 未來展望49 參考文獻50

    [1] Qasim, M., Badrelzaman, M., Darwish, N.N., Darwish, N.A., and Hilal, N., Reverse osmosis desalination: A state-of-the-art review. Desalination, 2019. 459: p. 59-104.
    [2] Oki, T. and Kanae, S., Global Hydrological Cycles and World Water Resources. Science, 2006. 313(5790): p. 1068-1072.
    [3] Postel, S.L., Daily, G.C., and Ehrlich, P.R., Human Appropriation of Renewable Fresh Water. Science, 1996. 271(5250): p. 785-788.
    [4] Mekonnen, M.M. and Hoekstra, A.Y., Four billion people facing severe water scarcity. Science Advances, 2016. 2(2): p. e1500323.
    [5] Wada, Y., Beek, L.P.H., Viviroli, D., Dürr, H., Weingartner, R., and Bierkens, M.F.P., Global monthly water stress: II. Water demand and severity of water. Water Resources Research - WATER RESOUR RES, 2011. 47.
    [6] Elsaid, K., Kamil, M., Sayed, E.T., Abdelkareem, M.A., Wilberforce, T., and Olabi, A., Environmental impact of desalination technologies: A review. Science of The Total Environment, 2020. 748: p. 141528.
    [7] Lee, A., Elam, J.W., and Darling, S.B., Membrane materials for water purification: design, development, and application. Environmental Science: Water Research & Technology, 2016. 2(1): p. 17-42.
    [8] Fillet, R., Nicolas, V., Fierro, V., and Celzard, A., A review of natural materials for solar evaporation. Solar Energy Materials and Solar Cells, 2021. 219: p. 110814.
    [9] Tu, R. and Hwang, Y., Reviews of atmospheric water harvesting technologies. Energy, 2020. 201: p. 117630.
    [10] Jarimi, H., Powell, R., and Riffat, S., Review of sustainable methods for atmospheric water harvesting. International Journal of Low-Carbon Technologies, 2020. 15(2): p. 253-276.
    [11] Zhou, X., Lu, H., Zhao, F., and Yu, G., Atmospheric Water Harvesting: A Review of Material and Structural Designs. ACS Materials Letters, 2020. 2(7): p. 671-684.
    [12] Peeters, R., Vanderschaeghe, H., Rongé, J., and Martens, J.A., Fresh water production from atmospheric air: Technology and innovation outlook. (2589-0042 (Electronic)).
    [13] Klemm, O., Schemenauer, R.S., Lummerich, A., Cereceda, P., Marzol, V., Corell, D., van Heerden, J., Reinhard, D., Gherezghiher, T., Olivier, J., Osses, P., Sarsour, J., Frost, E., Estrela, M.J., Valiente, J.A., and Fessehaye, G.M., Fog as a Fresh-Water Resource: Overview and Perspectives. AMBIO, 2012. 41(3): p. 221-234.
    [14] Muselli, M., Beysens, D., Marcillat, J., Milimouk, I., Nilsson, T., and Louche, A., Dew water collector for potable water in Ajaccio (Corsica Island, France). Atmospheric Research, 2002. 64(1): p. 297-312.
    [15] LaPotin, A., Kim, H., Rao, S.R., and Wang, E.N., Adsorption-Based Atmospheric Water Harvesting: Impact of Material and Component Properties on System-Level Performance. Accounts of Chemical Research, 2019. 52(6): p. 1588-1597.
    [16] Cantrell, W., McCrory, C., and Ewing, G.E., Nucleated deliquescence of salt. The Journal of Chemical Physics, 2002. 116(5): p. 2116-2120.
    [17] Tereshchenko, A.G., Deliquescence: Hygroscopicity of Water-Soluble Crystalline Solids. Journal of Pharmaceutical Sciences, 2015. 104(11): p. 3639-3652.
    [18] Zhuravlev, L.T., The Surface Chemistry of Amorphous Silica. Zhuravlev Model. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2000. 173: p. 1-38.
    [19] Brunauer, S., Emmett, P.H., and Teller, E., Adsorption of Gases in Multimolecular Layers. Journal of the American Chemical Society, 1938. 60(2): p. 309-319.
    [20] Liu, X., Wang, X., and Kapteijn, F., Water and Metal–Organic Frameworks: From Interaction toward Utilization. Chemical Reviews, 2020. 120(16): p. 8303-8377.
    [21] Zu, K., Qin, M., and Cui, S., Progress and potential of metal-organic frameworks (MOFs) as novel desiccants for built environment control: A review. Renewable and Sustainable Energy Reviews, 2020. 133: p. 110246.
    [22] Guo, Y., Bae, J., Fang, Z., Li, P., Zhao, F., and Yu, G., Hydrogels and Hydrogel-Derived Materials for Energy and Water Sustainability. Chemical Reviews, 2020. 120(15): p. 7642-7707.
    [23] Louf, J.-F., Lu, N.B., O'Connell, M.G., Cho, H.J., and Datta, S.S., Under pressure: Hydrogel swelling in a granular medium. Science advances, 2021. 7(7): p. eabd2711.
    [24] Zheng, X., Ge, T.S., Wang, R.Z., and Hu, L.M., Performance study of composite silica gels with different pore sizes and different impregnating hygroscopic salts. Chemical Engineering Science, 2014. 120: p. 1-9.
    [25] Guo, Y., Guan, W., Lei, C., Lu, H., Shi, W., and Yu, G., Scalable super hygroscopic polymer films for sustainable moisture harvesting in arid environments. Nature Communications, 2022. 13(1): p. 2761.
    [26] Yin, Y., Qian, J., and Zhang, X., Recent advancements in liquid desiccant dehumidification technology. Renewable and Sustainable Energy Reviews, 2014. 31: p. 38-52.
    [27] Rahimi-Ahar, Z., Hatamipour, M.S., and Ahar, L.R., Air humidification-dehumidification process for desalination: A review. Progress in Energy and Combustion Science, 2020. 80: p. 100850.
    [28] Abdullah, S., Zubir, M.N.B.M., Muhamad, M.R.B., Newaz, K.M.S., Öztop, H.F., Alam, M.S., and Shaikh, K., Technological development of evaporative cooling systems and its integration with air dehumidification processes: A review. Energy and Buildings, 2023. 283: p. 112805.
    [29] Wagner, W., Saul, A., and Pruss, A., International Equations for the Pressure Along the Melting and Along the Sublimation Curve of Ordinary Water Substance. Journal of Physical and Chemical Reference Data, 1994. 23(3): p. 515-527.
    [30] Zhang, L.Z. and Niu, J.L., Indoor humidity behaviors associated with decoupled cooling in hot and humid climates. Building and Environment, 2003. 38(1): p. 99-107.
    [31] Zhang, L., Dang, C., and Hihara, E., Performance analysis of a no-frost hybrid air conditioning system with integrated liquid desiccant dehumidification. International Journal of Refrigeration, 2010. 33(1): p. 116-124.
    [32] Ejeian, M. and Wang, R.Z., Adsorption-based atmospheric water harvesting. Joule, 2021. 5(7): p. 1678-1703.
    [33] Daou, K., Wang, R.Z., and Xia, Z.Z., Desiccant cooling air conditioning: a review. Renewable and Sustainable Energy Reviews, 2006. 10(2): p. 55-77.
    [34] Jia, C.X., Dai, Y.J., Wu, J.Y., and Wang, R.Z., Analysis on a hybrid desiccant air-conditioning system. Applied Thermal Engineering, 2006. 26(17): p. 2393-2400.
    [35] William, G.E., Mohamed, M.H., and Fatouh, M., Desiccant system for water production from humid air using solar energy. Energy, 2015. 90: p. 1707-1720.
    [36] Kim, H., Yang, S., Rao, S.R., Narayanan, S., Kapustin, E.A., Furukawa, H., Umans, A.S., Yaghi, O.M., and Wang, E.N., Water harvesting from air with metal-organic frameworks powered by natural sunlight. Science, 2017. 356(6336): p. 430-434.
    [37] Cui, Y., Luo, X., Zhang, F., Sun, L., Jin, N., and Yang, W., Progress of passive daytime radiative cooling technologies towards commercial applications. Particuology, 2022. 67: p. 57-67.
    [38] Chen, M., Pang, D., Chen, X., Yan, H., and Yang, Y., Passive daytime radiative cooling: Fundamentals, material designs, and applications. EcoMat, 2022. 4(1): p. e12153.
    [39] Li, B., Hua, L., Tu, Y., and Wang, R., A Full-Solid-State Humidity Pump for Localized Humidity Control. Joule, 2019. 3(6): p. 1427-1436.
    [40] Skovajsa, J., Koláček, M., and Zálešák, M. Phase Change Material Based Accumulation Panels in Combination with Renewable Energy Sources and Thermoelectric Cooling. Energies, 2017. 10, DOI: 10.3390/en10020152.
    [41] Díaz-Marín, C.D., Zhang, L., Lu, Z., Alshrah, M., Grossman, J.C., and Wang, E.N., Kinetics of Sorption in Hygroscopic Hydrogels. Nano Letters, 2022. 22(3): p. 1100-1107.
    [42] Mizuno, K., Ishii, J., Kishida, H., Hayamizu, Y., Yasuda, S., Futaba, D.N., Yumura, M., and Hata, K., A black body absorber from vertically aligned single-walled carbon nanotubes. Proceedings of the National Academy of Sciences, 2009. 106(15): p. 6044-6047.
    [43] Cao, B., Tu, Y., and Wang, R., A Moisture-Penetrating Humidity Pump Directly Powered by One-Sun Illumination. iScience, 2019. 15: p. 502-513.
    [44] Lawrence, M.G., The Relationship between Relative Humidity and the Dewpoint Temperature in Moist Air: A Simple Conversion and Applications. Bulletin of the American Meteorological Society, 2005. 86(2): p. 225-234.
    [45] Wu, Y.-L., Zheng, J.-W., Muneeshwaran, M., Yang, K.-S., and Wang, C.-C., Moist air condensation heat transfer enhancement via superhydrophobicity. International Journal of Heat and Mass Transfer, 2022. 182: p. 121973.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE