| 研究生: |
曹哲維 Tsao, Tze-Wei |
|---|---|
| 論文名稱: |
台南市四草野生動物保護區鹽沼溼地底泥有機物之細菌分解 Degradation of Organic Matters by Bacteria in the Salt Marsh Wetland Sediments of the Syh-Tsao Wildlife Conservation Area, Tainan |
| 指導教授: |
簡錦樹
Jean, Jiin-Shuh |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 地球科學系 Department of Earth Sciences |
| 論文出版年: | 2005 |
| 畢業學年度: | 93 |
| 語文別: | 中文 |
| 論文頁數: | 85 |
| 中文關鍵詞: | 有機物分解 、鹽沼溼地 、細菌活動性 、營養鹽循環 |
| 外文關鍵詞: | organic matter degradation, salt marsh wetland, bacterial activity, cycling of nutrient |
| 相關次數: | 點閱:75 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究於台南市四草野生動物保護區鹽沼溼地A池(偶感潮池)、C池(常感潮池)進行底泥有機物之細菌分解實驗,探討環境因子在地點、深度及季節上的變化及其對有機物分解速率的影響關係。研究結果顯示C池底泥有機物的細菌分解量範圍為100-7560 mg kg-1,細菌分解速率範圍為0.02-9.25 mg kg-1 hr-1,皆高於A池(分解量高達14.14%,分解速率高達8.82%)。在深度上則呈不規則變化,表層的分解速率較快,範圍為0.07-8.85 mg kg-1 hr-1,並隨深度略為降低,減少幅度為4.19%。季節上以夏季的8月、秋季及冬季初的12月有較快的有機物分解速率,範圍為0.17-9.25 mg kg-1 hr-1,月份季節間呈現明顯的差異性(p<0.001)。多變量逐步迴歸分析結果顯示A池細菌分解速率受到硝酸鹽、硫酸鹽和溫度的影響(0.385<r2<0.507, p<0.05),C池則受到氯鹽、酸鹼度及硫酸鹽的影響(0.562<r2<0.648, p<0.05)。主成份分析結果顯示溫度等環境因子與雨季過後水位的變化會影響細菌族群的活動性,而菌群活性的提升會加速有機物的分解作用及濕地中營養鹽的循環。此外,環境因子在有機物的分解上扮演很重要的角色,而有機物分解轉變過程的加快可以增加供應給水生植物與藻類所利用之營養鹽的生物有效性以及提高水體中營養物質的濃度含量。
This study was to investigate the degradation of organic matters by bacteria with temporal and spatial variations in the salt marsh wetland sediments of the Syh-Tsao Wildlife Conservation Area, with the objective of determining relationships between degradation rates of organic matters and environmental factors. Amounts(100-7560 mg kg-1) and rates(0.02-9.25 mg kg-1 hr-1) of organic matters degradation were higher(about 14.14% in amounts and 8.82% in rates) in pond C as compared to those of the pond A in the salt marsh. Organic matter degradation had irregular changes in different depths and were higher in surface soils and decreased with depth. Rates of organic matters degradation ranged from 0.07-8.85 mg kg-1 hr-1 in 0-10 ㎝ soil layer and decreased with depth. The degradation rates(0.17-9.25 mg kg-1 hr-1) of organic matters in August through December were significantly greater than those in other months and seasons during the study period. Degradation rates of organic matters were significantly related to the nitrate, sulfate, and temperature in pond A(0.385<r2<0.507, p<0.05), and to the chloride, pH, and sulfate in pond C(0.562<r2<0.648, p<0.05). Bacterial activity was influenced by temperature and exposure of soil to O2, as it occurred in periods of low rainfall or low water level. The increase in bacterial activity contributes to enhance the degradation rates of organic matters and cycling of nutrients in wetlands. The results showed that environmental factors play an important role in the regulation of organic matters degradation. Increased turnover of organic matters may lead to increase the supply of bioavailable nutrients to emergent macrophytes and periphyton and higher nutrient concentrations in water.
中文部份:
中興工程顧問社, 1992, 台南科技工業區開發計畫可行性規劃報告, 經濟部工業局委託研究報告。
王建平、賴雪端、翁義聰、童淑珠、彭仁君, 2000, 台南市四草野生動物保護區生態系統動態模式建立, 行政院農委會。
陳順宇, 1997, 迴歸分析, 華泰書局, 520頁, 台南。
陳順宇, 2004, 多變量分析, 華泰書局, 560頁, 台南。
英文部分:
Alongi, D.M. and Christoffersen, P., 1992. Benthic infauna and organism-sediment relations in a shallow, tropical area: influence of outweled mangrove detritus and physical disturbances. Mar. Ecol. Prog. Ser. 81, 229-245.
Benner, R., Maccubbin, A.E. and Hodson, R.E., 1984. Anaerobic biodegradation of the lignin and polysaccharide components of lignocellulose and synthetic lignin by sediment microflora. Appl. Env. Microbiol. 47, 998-1004.
Bridgham, S.D. and Richardson, C.J., 1992. Mechanisms controlling soil CO2 and CH4 in southern peatlands. Soil Biol. Biochem. 24, 1089-1099.
Broome, S.W., 1990. Creation and restoration of tidal wetlands of the southeastern United States. Pages 37-72. In Kusler, J.A. and M.E.Kentula, eds. Wetland creation and restoration: the status of the science. Island Press, Washington, D.C.
Chrost, R.J., 1991. Environmental control of the synthesis and activity of aquatic microbial ectoenzymes. Pp. 29–59. In R.J. Chrost (ed.) Microbial enzymes in aquatic environments. Springer-Verlag, New York.
Clough, B.F., 1992. Primary productivity and growth of mangrove forests,In:Tropical mangrove ecosystems; (eds) Robertson, A.I. and Alongi, D.M., American Geophysical Union, Washington, D.C., Pp. 225-249.
D'Angelo, E.M. and Reddy, K.R., 1994. Diagenesis of organic matter in a wetland receiving hypereutrophic lake water. II. Role of inorganic electron acceptors in nutrient release. J. Environ. Qual. 23, 937-943.
D'Angelo, E.M. and Reddy, K.R., 1999. Regulators of heterotrophic microbial potentials in wetland soils. Soil Biol. Biochem. 31, 815-830.
DeBusk, W.F., 1996. Organic matter turnover along a nutrient gradient in the Everglades. Ph.D. Dissertation, Univ. of Florida, Gainesville, FL.
DeBusk, W.F. and Reddy, K.R., 1998. Turnover of detrital organic carbon in a nutrient-impacted Everglades marsh. Soil Sci. Soc. Am. J. 62, 1460-1468.
Glinski J., Stahr K., Stepniewska Z. and Brzezinska M., 1995. Changes of redox and pH conditions in a flooded soil amended with glucose and manganese oxide or iron oxide under laboratory conditions, Z. Pflanzenernähr. Bodenkd. 159, 297-304.
Heal, O.W., Flanagan, P.W., French, D.D. and MacLean, Jr, S.F.,1981. Decomposition and accumulation of organic matter. Pages. 587–633. In L.C.Bliss, O.W. Heal, and J.J. Moore (ed.) Tundra ecosystems: A comparative analysis. Cambridge Univ. Press, Cambridge.
Hunter, M.D. and Price, P.W., 1992. Playing chutes and ladders:heterogeneity and the relative roles of bottom-up and top-down forces in natural communities. Ecology 73, 724-732.
Kaye, J.P. and Hart, S.C., 1997. Competition for nitrogen between plants and soil microorganisms. TREE 12, 139-143.
Kowalenko, C.G., Ivarson, K.C. and Cameron, D.R., 1978. Effect of moisture content, temperature and nitrogen fertilization on carbon dioxide evolution from field soils. Soil Biol. Biochem. 10, 417-423.
McKinley, V.L. and Vestal, J.R., 1992. Mineralization of glucose and lignocellulose by four arctic fresh water sediments in response to nutrient enrichment. Appl. Environ. Microb. 58, 1554-1563.
McLatchey, G.P. and Reddy, K.R., 1998. Regulation of organic matter decomposition and nutrient release in a wetland soil. J. Environ. Qual. 27, 1268-1274.
Melillo, J.M., Aber, J.D., Linkins, A.E., Ricca, A., Fry, B. and Nadelhoffer, K.J., 1989. Carbon and nitrogen dynamics along the decay continuum: plant litter to soil organic matter. Plant and Soil. 115, 189-198.
Mitsch, W.J. and Gosselink, J.G., 1986. Wetlands. Van Nostrand Reinhold; New York, New York.
Miyazawa, M., Pavan, M.A. and de Oliveira, E.L., 2000. Gravimetric determination of soil organic matters. Brazilian Archives of Biology and Technology. 43(5), 475-478.
Moore, J.C. and DeRuiter, P.C., 1993. Assessment of disturbance on soil ecosystems. Vet. Parasitol. 48, 75–85.
Moorhead, D.L., Westerfield, M.W. and Zak, J.C., 1998. Plants retard litter decay in a nutrient limited soil: a case of exploitative competition? Oecologia 113, 530-536.
Neher, D.A., Barbercheck, M.E., El-Allaf, S.M. and Anas, O., 2003. Effects of disturbance and ecosystem on decomposition. Applied Soil Ecology 23, 165-179.
Odum, W.E. and Heald, E.J., 1972. Trophic analysis of an estuarine mangrove community; Bull. Mar. Sci.. 22, 671-738.
Odum, W.E. and Heald, E.J., 1975. The detritus based food web of an estuarine mangrove community, In: Estuarine Research; (ed.) Cronin, L.E., Academic Press, New York, Pp. 265-286.
Reddy, K.R. and D'Angelo, E.M., 1994. Soil processes regulating water quality in wetlands. Pages. 309-324. In W.J. Mitsch (ed.) Global wetlands: Old world and new. Elsevier Sci. Publ., Amsterdam, The Netherlands.
Reddy K.R., D'Angelo E.M. and Harris W.G., 1998. Biogeochemistry of wetlands, in: Summer M.E. (ed.), Handbook of Soil Science, CRC Press, Boca Raton, FL, USA, Pp. 89-119.
Robertson, A.I., Alongi, D.M. and Boto, K.G., 1992. Food chains and carbon fluxes In: Tropical mangrove ecosystems (eds) Robertson, A.I. and Alongi, D.M., American Geophysical Union, Washington, D.C., Pp. 293-326.
Seneca, E.D. and Broome, S.W., 1992. Restoring tidal marshes in North Carolina and France. Pages 53-78 in G.W. Thayer, ed. Restoring the nation.s marine environment. Maryland Sea Grant; College Park, Maryland.
Sessitsch, A., Weilharter, A., Gerzabek, M.H., Kirchmann, H. and Kandeler, E., 2001. Microbial population structures in soil particle size fractions of a long-term fertilizer field experiment. Appl. Env. Microbiol. 67, 4215-4224.
Sinsabaugh, R.L., Antibus, R.K. and Linkins, A.E., 1991. An enzymatic approach to the analysis of microbial activity during plant litter composition. Agric. Ecosyst. Environ. 34, 43-54.
Stumm W. and Morgan J.J., 1996a. Kinetics at the solid-water interface: adsorption, dissolution of minerals, nucleation, and crystal growth, in: John Wiley & Sons (Eds.), Aquatic chemistry. Chemical Equilibra and Rates in Natural Waters, New York, Pp. 760-817.
Stumm W. and Morgan J.J., 1996b. The solid-solution interface, in: John Wiley & Sons (Eds.), Aquatic chemistry. Chemical Equilibra and Rates in Natural Waters, New York, Pp. 516-608.
Swift, M.J., Heal, O.W. and Anderson, J.M., 1979. Decomposition in terrestrial ecosystems. Univ. of California Press, Berkeley.
Taylor, B.R. and Parkinson, D., 1988. Aspen and pine leaf litter decomposition in laboratory microcosms. II. Interactions of temperature and moisture level. Canadian Journal of Botany 66, 1966-1973.
Twilley, R.R., 1988. Coupling of mangroves to the productivity of estuarine and coastal waters, In: Coastal-Offshore Ecosystem Interactions; (ed) Jansson, B.O., Germany: Springer-Verlag, Pp. 155-180.
University of Kentucky, 2002. PLS671: Environmental Soil Chemistry: (1) Determination of Organic Matter Using the Wet Oxidation Method; (2) Humic Substances Extractions Lab#3 9/24/02-10/1-02. Department of Agronomy, College of Agriculture, University of Kentucky.
Walkley A. and Black, I.A., 1934. An examination of the Degjareff method for determining SOM and a proposed modification of the chromic acid and titration method. Soil Science 37, 29-38.
Wattayakorn, G., Wolanski, E. and Kjerfve, B., 1990. Mixing, trapping and outwelling in the Klong Ngao mangrove swamp, Thailand; Estuar. Coast. Shelf Sci. 31, 667-688.
Westermann, P., 1993. Wetland and swamp microbiology. Pages. 215-238. In T.E. Ford (ed.). Aquatic Microbiology. Blackwell Scientific Publications.
Whitney, D.M., Chalmers, A.G., Haines, E.B., Hanson, R.B., Pomeroy, L.R. and Sherr, B., 1981. The cycles of nitrogen and phosphorous. Pages. 163-181. In L.R. Pomeroy and R.G. Weigert, eds. The ecology of a salt marsh. Springer-Verlag; New York, New York.
Wright, A.L. and Reddy, K.R., 2001a. Heterotrophic Microbial Activity in Northern Everglades Wetland Soils. Soil Sci. Soc. Am J. 65, 1856-1864.
Wright, A.L. and Reddy, K.R., 2001b. Phosphorus loading effects on extracellular enzyme activity in Everglades wetland soils. Soil Sci. Soc. Am J. 65, 588-595.
Zehnder, A.J.B. and Stumm, W., 1988. Geochemistry and biogeochemistry of anaerobic habitats. Pages. 1-38. In Zehnder (ed.) Biology of anaerobic microorganisms. John Wiley, New York.