簡易檢索 / 詳目顯示

研究生: 鄧邦儀
Teng, Pang-Yi
論文名稱: 探討細胞表面表現之alpha-enolase在調控蝕骨細胞骨質再吸收活性的角色
Investigating the roles of surface alpha-enolase on the regulation of bone resorption activity of osteoclasts
指導教授: 陳立宗
Chen, Li-Tzong
學位類別: 碩士
Master
系所名稱: 醫學院 - 分子醫學研究所
Institute of Molecular Medicine
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 65
中文關鍵詞: 骨骼疾病蝕骨細胞骨質再吸收甲型烯醇酶
外文關鍵詞: skeletal disorder, osteoclast, bone resorption, alpha-enolase
相關次數: 點閱:112下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 背景
    蝕骨細胞是由單核球或巨噬細胞融合而成,具有骨質再吸收活性多核細胞,在骨質重組中扮演重要角色。在許多骨骼疾病中均伴隨蝕骨細胞其骨質再吸收活性過度活化的現象,例如,骨質疏鬆症、骨關節炎、類風濕關節炎和骨頭佩吉特氏病。因此,如何減少蝕骨細胞的形成,亦或抑制其骨質再吸收活性是對於這些骨骼疾病治療最主要的方向。近來文獻指出原本表現在細胞質中參與醣解反應的酵素-甲型烯醇酶(alpha-enolase, ENO1),會表現在活化的單核球或巨蝕細胞的細胞表面上,作為纖維蛋白溶解酶(plasminogen)的受體,參與纖維蛋白溶解酶的活化並促進細胞移行。另外在文獻中也發現,腫瘤細胞表面表現的ENO1在細胞外基質降解和癌細胞遠端轉移的過程中扮演重要角色。國衛院先前研究顯示,利用ENO1抗體阻斷細胞表面的ENO1和纖維蛋白溶解酶間的結合,可抑制細胞外基質降解、癌細胞侵犯和腫瘤骨轉移。抑制腫瘤骨轉移可能是因為藉由阻斷ENO1進而影響到 (1) 癌細胞之骨轉移 (2) 癌細胞誘發蝕骨細胞前驅細胞移動至骨轉移病灶並進行分化 (3) 蝕骨細胞骨質再吸收之活性。雖然蝕骨細胞是由單核球或巨噬細胞分化而來,其細胞表面ENO1的表現狀態以及ENO1在蝕骨細胞之分化及骨質再吸收功能的調控仍是未知的。因此本研究利用添加ENO1抗體的方式,探討細胞表面表現的ENO1是否參與在蝕骨細胞前驅細胞移動、蝕骨細胞分化以及蝕骨細胞骨質再吸收活性調控上。

    方法與結果
    本實驗利用一老鼠的巨噬細胞細胞株-RAW264.7及人類單核球細胞株-THP-1,作為蝕骨細胞的前驅細胞來進行研究。RAW264.7細胞可在RANKL (receptor activator of nuclear factor κB ligand)的作用下使其分化成成熟的蝕骨細胞,而THP-1細胞則需要有PMA (phorbol-12-myristate-13-acetate)、M-CSF (macrophage colony-stimulating factor)、RANKL及維他命D3 (VitD3)才可使其分化。藉由蝕骨細胞特別表現的蛋白,像是TRAP (tartrate-resistance acid phosphatase)、CTSK (cathepsin K)及ITGB3 (integrin 3),我們以細胞染色或西方墨點法確認這些分化的細胞是否表現這些蛋白。在細胞培養過程中添加ENO1抗體可抑制蝕骨細胞前驅細胞的移動能力,但對於前驅細胞在細胞激素刺激下進行蝕骨細胞的分化則無影響。同時ENO1抗體不影響蝕骨細胞的CTSK酵素活性以及蝕骨細胞對於鈣化骨頭的再吸收,僅些微抑制蝕骨細胞中纖維蛋白溶解酶和基質金屬蛋白酶的活化及其下游對骨基質的降解。利用流式細胞儀分析ENO1、PLG、uPA和uPAR在蝕骨細胞細胞表面的表現,我們發現uPAR在分化後的蝕骨細胞中表現量明顯增加,並且透過共軛焦顯微鏡觀察到ENO1和uPAR有共同分布的現象。此結果顯示,蝕骨細胞其纖維蛋白溶解酶的活化,可能是藉由ENO1和uPAR間共同分布所促進,並且ENO1抗體阻擋ENO1和uPAR間的共同分布而抑制纖維蛋白溶解酶的活化。

    結論
    藉由以上實驗結果得知,細胞表面表現的ENO1可能藉由參與在蝕骨細胞前驅細胞的移動,以及蝕骨細胞對於骨頭基質或軟骨進行降解而影響蝕骨細胞相關的骨質再吸收,包括癌細胞骨轉移之發生。然這些發現仍需要更進一步的探討與確認。

    Background
    Osteoclast, a multinucleated cell derived from the monocyte/macrophage lineage, is responsible for bone resorption in bone remodeling. Many skeletal disorders are accompanied by hyperactive osteoclasts, such as osteoporosis, osteoarthritis, rheumatoid arthritis and Paget’s disease, and thus how to decrease the formation of osteoclasts and/or inhibit their bone resorption activity are major therapeutic targets for these conditions. Recent studies have identified several cell types with the expression of alpha-enolase (ENO1), a glycolytic enzyme, on their cell membrane surface, including activated monocytes and macrophages. Data presented in the literature indicate that surface ENO1 promotes ECM degradation and invasion of cancer cells, while blocking of surface ENO1 by an ENO1 antibody suppresses ECM degradation, cell invasion and tumor bone metastasis. The suppression of bone metastasis by blocking of ENO1 may arise from the modulations of (1) metastasis of cancer cells to the bone, (2) cancer cell-mediated migration of osteoclast precursors to the bone and subsequent osteoclast differentiation, and (3) the bone resorption activity of osteoclasts. As osteoclasts are differentiated from monocytes or macrophages, the expression and functions of surface ENO1 in osteoclasts largely remained unknown. In this study, we used an ENO1-specific antibody to block the surface alpha-enolase, and then examined the effect of blocking of surface alpha-enolase on migration of osteoclast precursor cells, osteoclast differentiation and osteoclastic bone resorption.

    Methods and Results
    To illustrate the roles of surface ENO1 on osteoclasts, RAW264.7 (a mouse macrophage cell line) and THP-1 (a human monocytic leukemia cell line) cells were used as precursors of osteoclasts in this study. The RAW264.7 cells could be differentiated into osteoclasts after RANKL (receptor activator of nuclear factor κB ligand) treatment; while THP-1 cells would differentiate into osteoclasts under the treatment of PMA (phorbol-12-myristate-13-acetate), M-CSF (macrophage colony-stimulating factor), RANKL and Vitamin D3. The successful induction of osteoclast differentiation was confirmed by the expression of osteoclast markers, such as tartrate-resistance acid phosphatase (TRAP), cathepsin K (CTSK) and integrin 3 (ITGB3), by either western blot or immunocyto-chemical staining. ENO1 antibody treatment reduced the migration of osteoclast precursors, but had no effect on their differentiation into osteoclasts. In addition, plasminogen activation, metalloproteinases (MMPs) activity and ECM degradation were decreased while blocking surface ENO1 with ENO1 Ab. However, ENO1 antibody treatment had no effect on CTSK activity and resorption of inorganic matrix, such as calcium phosphate. The surface expression of uPAR was significantly increased and co-localization of ENO1 and uPAR on cell surface was clearly observed in osteoclasts. These results suggested that the increased co-localization of ENO1 and uPAR might be contribute to the enhanced activation of plasmin in osteoclasts, while addition of ENO1 Ab interfering the interaction between ENO1 and uPAR, resulting in inhibition of plasminogen activation.

    Conclusions
    The results suggested that surface ENO1 may be involved in the migration of osteoclast precursors and the degradation of bone matrix or cartilage by osteoclasts, thus modulating the osteoclast-related bone resorption process, including cancer bone metastases. However, all the observations require further investigation and validation.

    中文摘要.................................................I Abstract..............................................III Acknowledgement........................................VI Contents.............................................VIII Table of contents......................................XI Figure of contents....................................XII Appendixes of contents...............................XIII Introduction............................................1 Bone remodeling.........................................1 Spectrum of skeletal disorders..........................2 Osteoclastogenesis and activation of bone resorption....5 Proteolytic enzymes participate in bone resorption......8 Therapy................................................11 Enolase................................................14 Aims and outline of this study.........................16 Materials and Methods..................................17 Cell lines and culture conditions......................17 Antibodies.............................................17 Cytokines and reagents.................................17 Osteoclastogenesis.....................................18 Activation of macrophages..............................18 Tartrate-resistant acid phosphatase (TRAP) assay.......18 Cloning of osteoclast precursors from the RAW264.7 cells..................................................19 Western blot analysis..................................19 Flow cytometric analysis...............................19 Immunofluorescence microscopy..........................20 Cathepsin K activity assay.............................20 Plasmin activity assay.................................21 MMP activity assay.....................................21 Collagen degradation assay.............................21 In vitro bone-resorbing assay..........................22 In vitro proliferation assay...........................22 In vitro cell viability................................23 Transwell migration assay..............................23 Results................................................24 Part 1. Establishing the conditions of osteoclast differentiation........................................24 Differentiation of RAW264.7 macrophage cells into osteoclast-like cells..................................24 Differentiation of THP-1 monocytic cells into osteoclast-like cells.............................................24 Protein analysis of differentiating osteoclasts........24 Differentiating osteoclasts expressed bone resorption activity...............................................25 Part 2. Investigating the roles of surface -enolase in osteoclasts............................................26 ENO1 blockade suppressed the migration of osteoclast precursor cells........................................26 Blocking of surface ENO1 had no effect on osteoclast differentiation........................................26 Blocking of surface ENO1 had no effect on osteoclastic resorption of mineral bone surface, but slightly reduced osteoclastic degradation of collagen...................27 ENO1 blockade had no effect on CTSK activity, but suppressed the activation of plasmin and matrix metalloproteinase in osteoclasts.......................27 Part 3: The mechanism of inhibition of plasmin activity...............................................28 Surface uPAR was significantly increased in osteoclasts............................................28 Co-localization of ENO1 and uPAR on the cell surfaces was clearly observed in osteoclasts........................29 Discussions............................................30 Effects of ENO1 Ab on migration of osteoclast precursors and osteoclast differentiation.........................30 Effects of ENO1 Ab on osteoclastic bone resorption.....31 Plasminogen/plasmin activation system in osteoclasts...31 Conclusions............................................33 References.............................................34

    Agency, E.M. (2012). Questions and answers on the review of calcitonincontaining
    medicines.
    Angel NZ, W.N., Forwood MR, Ostrowski MC, Cassady AI, Hume DA. (2000). Transgenic mice overexpressing tartrate-resistant acid phosphatase exhibit an increased rate of bone turnover. J Bone Miner Res 15, 103-110.
    Asagiri, M., and Takayanagi, H. (2007). The molecular understanding of osteoclast differentiation. Bone 40, 251-264.
    Bae, S., Kim, H., Lee, N., Won, C., Kim, H.R., Hwang, Y.I., Song, Y.W., Kang, J.S., and Lee, W.J. (2012). alpha-Enolase expressed on the surfaces of monocytes and macrophages induces robust synovial inflammation in rheumatoid arthritis. Journal of immunology 189, 365-372.
    Baron R, F.S., Russell RG. (2011). Denosumab and bisphosphonates: different mechanisms of action and effects. Bone 1, 677-692.
    Black DM, D.P., Eastell R, Reid IR, Boonen S, Cauley JA, Cosman F, Lakatos P, Leung PC, Man Z, Mautalen C, Mesenbrink P, Hu H, Caminis J, Tong K, Rosario-Jansen T, Krasnow J, Hue TF, Sellmeyer D, Eriksen EF, Cummings SR; HORIZON Pivotal Fracture Trial. (2007). Once-yearly zoledronic acid for treatment of postmenopausal osteoporosis. N Engl J Med 356, 1809-1822.
    Bonfil, R.D., and Cher, M.L. (2011). The role of proteolytic enzymes in metastatic bone disease. IBMS BoneKEy 8, 16-36.
    Boyle WJ, S.W., Lacey DL. (2003). Osteoclast differentiation and activation. Nature 423, 337-342.
    Chesnut CH 3rd, S.S., Andriano K, Genant H, Gimona A, Harris S, Kiel D, LeBoff M, Maricic M, Miller P, Moniz C, Peacock M, Richardson P, Watts N, Baylink D. (2000). A randomized trial of nasal spray salmon calcitonin in postmenopausal women with established osteoporosis: the prevent recurrence of osteoporotic fractures study. PROOF Study Group. Am J Med 109, 267-276.
    Daci E, E.V., Torrekens S, Van Herck E, Tigchelaar-Gutterr W, Bouillon R, Carmeliet G. (2003). Increased Bone Formation in Mice Lacking Plasminogen Activators. J Bone Miner Res 18, 1167-1176.
    Daci E, U.N., Martin TJ, Bouillon R, Carmeliet G. (1999). The role of the plasminogen system in bone resorption in vitro. J Bone Miner Res 14, 946-952.
    Danks L, S.A., Gundle R, Athanasou NA. (2002). Synovial macrophage-osteoclast differentiation in inflammatory arthritis. Ann Rheum Dis 61, 916-921.
    Das R, B.T., Plow EF. (2007). Histone H2B as a functionally important plasminogen receptor on macrophages. Blood 110, 3763-3772.
    Delaissé JM, E.Y., Vaes G. (1984). In vivo and in vitro evidence for the involvement of cysteine proteinases in bone resorption. Biochem Biophys Res Commun 125, 441-447.
    Diaz-Ramos, A., Roig-Borrellas, A., Garcia-Melero, A., and Lopez-Alemany, R. (2012). alpha-Enolase, a multifunctional protein: its role on pathophysiological situations. Journal of biomedicine & biotechnology 2012, 156795.
    Dimopoulos MA, K.E., Anagnostopoulos A, Melakopoulos I, Gika D, Moulopoulos LA, Bamia C, Terpos E, Tsionos K, Bamias A. (2006). Osteonecrosis of the jaw in patients with multiple myeloma treated with bisphosphonates: evidence of increased risk after treatment with zoledronic acid. Haematologica 91, 968-971.
    Drake MT, C.B., Khosla S. (2008). Bisphosphonates: Mechanism of Action and Role in Clinical Practice. Mayo Clin Proc 83, 1032-1045.
    Duong le, T. (2012). Therapeutic inhibition of cathepsin K-reducing bone resorption while maintaining bone formation. BoneKEy reports 1, 67.
    Durand, M., Komarova, S.V., Bhargava, A., Trebec-Reynolds, D.P., Li, K., Fiorino, C., Maria, O., Nabavi, N., Manolson, M.F., Harrison, R.E., et al. (2013). Monocytes from patients with osteoarthritis display increased osteoclastogenesis and bone resorption: the In Vitro Osteoclast Differentiation in Arthritis study. Arthritis and rheumatism 65, 148-158.
    Everts, V., Daci, E., Tigchelaar-Gutter, W., Hoeben, K.A., Torrekens, S., Carmeliet, G., and Beertsen, W. (2008). Plasminogen activators are involved in the degradation of bone by osteoclasts. Bone 43, 915-920.
    Fowler, T.W., Kamalakar, A., Akel, N.S., Kurten, R.C., Suva, L.J., and Gaddy, D. (2015). Activin A inhibits RANKL-mediated osteoclast formation, movement and function in murine bone marrow macrophage cultures. J Cell Sci 128, 683-694.
    Furlan, F., Galbiati, C., Jorgensen, N.R., Jensen, J.E., Mrak, E., Rubinacci, A., Talotta, F., Verde, P., and Blasi, F. (2007). Urokinase plasminogen activator receptor affects bone homeostasis by regulating osteoblast and osteoclast function. Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research 22, 1387-1396.
    G., V. (1968). On the mechanisms of bone resorption. The action of parathyroid hormone on the excretion and synthesis of lysosomal enzymes and on the extracellular release of acid by bone cells. J Cell Biol 39, 676-697.
    Garnero P, F.M., Karsdal MA, Nicamhlaoibh R, Risteli J, Borel O, Qvist P, Delmas PD, Foged NT, Delaissé JM. (2003). The type I collagen fragments ICTP and CTX reveal distinct enzymatic pathways of bone collagen degradation. J Bone Miner Res 18, 859-867.
    Goltzman, D. (2002). Discoveries, drugs and skeletal disorders. Nature reviews Drug discovery 1, 784-796.
    Hayman AR, J.S., Boyde A, Foster D, Colledge WH, Carlton MB, Evans MJ, Cox TM. (1996). Mice lacking tartrate-resistant acid phosphatase (Acp 5) have disrupted endochondral ossification and mild osteopetrosis. Development 122, 3151-3162.
    Hirayama T, D.L., Sabokbar A, Athanasou NA. (2002). Osteoclast formation and activity in the pathogenesis of osteoporosis in rheumatoid arthritis. Rheumatology (Oxford) 41, 1232-1239.
    Hoekman K, L.C., van de Ruit M, Bijvoet OL, Verheijen JH, Papapoulos SE. (1992). The effect of tissue type plasminogen activator (tPA) on osteoclastic resorption in embryonic mouse long bone explants: a possible role for the growth factor domain of tPA. Bone Miner 17, 1-13.
    Hsiao, K.C., Shih, N.Y., Fang, H.L., Huang, T.S., Kuo, C.C., Chu, P.Y., Hung, Y.M., Chou, S.W., Yang, Y.Y., Chang, G.C., et al. (2013). Surface alpha-enolase promotes extracellular matrix degradation and tumor metastasis and represents a new therapeutic target. PloS one 8, e69354.
    Inaoka T, B.G., Ishibashi O, Tezuka K, Kumegawa M, Kokubo T. (1995). Molecular cloning of human cDNA for cathepsin K: novel cysteine proteinase predominantly expressed in bone. Biochem Biophys Res Commun 206, 89-96.
    JA, K. (1994). Assessment of fracture risk and its application to screening for postmenopausal osteoporosis: Synopsis of a WHO Report. Osteoporos Int 4, 368-381.
    Kalbasi Anaraki, P., Patecki, M., Tkachuk, S., Kiyan, Y., Haller, H., and Dumler, I. (2015). Urokinase receptor mediates osteoclastogenesis via M-CSF release from osteoblasts and the c-Fms/PI3K/Akt/NF-kappaB pathway in osteoclasts. Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research 30, 379-388.
    Kanis, J.A., Johansson, H., Oden, A., Johnell, O., de Laet, C., Melton, I.L., Tenenhouse, A., Reeve, J., Silman, A.J., Pols, H.A., et al. (2004). A meta-analysis of prior corticosteroid use and fracture risk. Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research 19, 893-899.
    Kini, U., and Nandeesh, B.N. (2012). Physiology of bone formation, remodeling, and metabolism. Radionuclide and Hybrid Bone Imaging, 29-57.
    Lehenkari PP, K.M., Näpänkangas JP, Ylitalo KV, Mönkkönen J, Rogers MJ, Azhayev A, Väänänen HK, Hassinen IE. (2002). Further insight into mechanism of action of clodronate: inhibition of mitochondrial ADP/ATP translocase by a nonhydrolyzable, adenine-containing metabolite. Mol Pharmacol 61, 1255-1262.
    Lufkin EG, W.M., Deal C. (2001). The role of selective estrogen receptor modulators in the prevention and treatment of osteoporosis. Rheum Dis Clin North Am 27, 163-185.
    Manolagas SC, K.S., Jilka RL. (2002). Sex steroids and bone. Recent Prog Horm Res 57, 385-409.
    McMahon B, K.H. (2008). The plasminogen activator system and cancer. Pathophysiol Haemost Thromb 36, 184-194.
    Miller PD, B.M., Lewiecki EM, McClung MR, Ding B, Austin M, Liu Y, San Martin J; Amg Bone Loss Study Group. (2008). Effect of denosumab on bone density and turnover in postmenopausal women with low bone mass after long-term continued, discontinued, and restarting of therapy: a randomized blinded phase 2 clinical trial. Bone 43, 222-229.
    Morgan, H., and Hill, P.A. (2005). Human breast cancer cell-mediated bone collagen degradation requires plasminogen activation and matrix metalloproteinase activity. Cancer cell international 5, 1.
    Nakayama, T., Mizoguchi, T., Uehara, S., Yamashita, T., Kawahara, I., Kobayashi, Y., Moriyama, Y., Kurihara, S., Sahara, N., Ozawa, H., et al. (2011). Polarized osteoclasts put marks of tartrate-resistant acid phosphatase on dentin slices--a simple method for identifying polarized osteoclasts. Bone 49, 1331-1339.
    Nancy E. Lane, M. (2006). Epidemiology, etiology, and diagnosis of osteoporosis. American journal of obstetrics and gynecology 194, S3-11.
    Neutzsky-Wulff, A.V., Sorensen, M.G., Kocijancic, D., Leeming, D.J., Dziegiel, M.H., Karsdal, M.A., and Henriksen, K. (2010). Alterations in osteoclast function and phenotype induced by different inhibitors of bone resorption--implications for osteoclast quality. BMC musculoskeletal disorders 11, 109.
    Novack DV, F.R. (2011). Osteoclast motility: Putting the brakes on bone resorption. Ageing Res Rev 10, 54-61.
    Odvina CV, Z.J., Rao DS, Maalouf N, Gottschalk FA, Pak CY. (2005). Severely suppressed bone turnover: a potential complication of alendronate therapy. J Clin Endocrinol Metab 90, 1294-1301.
    Pawel Szulc, M.L.B. (2011). Overview of osteoporosis: Epidemiology and clinical management. International Osteoporosis Foundation
    Pelletier, J.P., Boileau, C., Brunet, J., Boily, M., Lajeunesse, D., Reboul, P., Laufer, S., and Martel-Pelletier, J. (2004). The inhibition of subchondral bone resorption in the early phase of experimental dog osteoarthritis by licofelone is associated with a reduction in the synthesis of MMP-13 and cathepsin K. Bone 34, 527-538.
    Plow, E.F., Doeuvre, L., and Das, R. (2012). So many plasminogen receptors: why? Journal of biomedicine & biotechnology 2012, 141806.
    Raisz, L.G. (1999). Physiology and pathophysiology of bone remodeling. Clinical Chemistry 45, 1353–1358.
    Rantakokko J, A.H., Savontaus M, Vuorio E (1996). Mouse cathepsin K: cDNA cloning and predominant expression of the gene in osteoclasts, and in some hypertrophying chondrocytes during mouse development. FEBS Letters 393, 307-313.
    Riggs BL, K.S., Melton LJ 3rd. (2002). Sex steroids and the construction and conservation of the adult skeleton. Endocr Rev 23, 279-302.
    Rodan GA, M.T. (2000). Therapeutic approaches to bone diseases. Science 289, 1508-1514.
    Rodan, S.B., and Duong, L.T. (2008). Cathepsin K – A new molecular target for osteoporosis. IBMS BoneKEy 5, 16-24.
    Ronday HK, S.H., Quax PH, van der Pluijm G, Löwik CW, Breedveld FC, Verheijen JH. (1997). Bone matrix degradation by the plasminogen activation system. Possible mechanism of bone destruction in arthritis. Br J Rheumatol 36, 9-15.
    Rousselle AV, H.D. (2002). Osteoclastic Acidification Pathways During Bone Resorption. Bone 30, 533-540.
    Rucci, N. (2008). Molecular biology of bone remodelling. Clinical Cases in Mineral and Bone Metabolism 5, 49-56.
    Russell RG, R.M., Frith JC, Luckman SP, Coxon FP, Benford HL, Croucher PI, Shipman C, Fleisch HA. (1999). The pharmacology of bisphosphonates and new insights into their mechanisms of action. Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research Suppl, 53-65.
    Saldanha RG, M.M., Bdeir K, Cines DB, Song X, Uitto PM, Weinreb PH, Violette SM, Baker MS. (2007). Proteomic identification of lynchpin urokinase plasminogen activator receptor protein interactions associated with epithelial cancer malignancy. J Proteome Res 6, 1016-1028.
    Shih, K.-J.L.a.N.-Y. (2007). The Role of Enolase in Tissue Invasion and Metastasis of Pathogens and Tumor Cells. J Cancer Mol 3, 45-48.
    Smolen, K.R.a.J.S. (2012). Inflammatory bone loss: pathogenesis and therapeutic intervention. Nature reviews Drug discovery 11, 234-250.
    Soares-Schanoski, A., Gomez-Pina, V., del Fresno, C., Rodriguez-Rojas, A., Garcia, F., Glaria, A., Sanchez, M., Vallejo-Cremades, M.T., Baos, R., Fuentes-Prior, P., et al. (2007). 6-Methylprednisolone down-regulates IRAK-M in human and murine osteoclasts and boosts bone-resorbing activity: a putative mechanism for corticoid-induced osteoporosis. Journal of leukocyte biology 82, 700-709.
    Tat SK, P.J., Velasco CR, Padrines M, Martel-Pelletier J. (2009). New perspective in osteoarthritis: the OPG and RANKL system as a potential therapeutic target? Keio J Med 58, 29-40.
    Teitelbaum, S.L. (2000). Bone resorption by osteoclasts. SCIENCE 289.
    Terrier, B., Degand, N., Guilpain, P., Servettaz, A., Guillevin, L., and Mouthon, L. (2007). Alpha-enolase: a target of antibodies in infectious and autoimmune diseases. Autoimmunity reviews 6, 176-182.
    Tezuka K, T.Y., Maejima A, Sato T, Nemoto K, Kamioka H, Hakeda Y, Kumegawa M. (1994). Molecular Cloning of a Possible Cysteine Proteinase Predominantly Expressed in Osteoclasts. The Journal of biological chemistry 269, 1106-1109.
    TJ, M. (1999). Calcitonin, an update. Bone 24, 63S-65S.
    Tumber A, P.S., Breckon J, Meikle MC, Reynolds JJ, Hill PA. (2003). The effects of serine proteinase inhibitors on bone resorption in vitro. J Endocrinol 178, 437-447.
    Väänänen HK, Z.H., Mulari M, Halleen JM. (2000). The cell biology of osteoclast function. Journal of Cell Science 113, 377-381.
    Wygrecka, M., Marsh, L.M., Morty, R.E., Henneke, I., Guenther, A., Lohmeyer, J., Markart, P., and Preissner, K.T. (2009). Enolase-1 promotes plasminogen-mediated recruitment of monocytes to the acutely inflamed lung. Blood 113, 5588-5598.
    Yang JN, A.E., Anderson GI, Martin TJ, Minkin C. (1997). Plasminogen activator system in osteoclasts. Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research 12, 761-768.
    Yavropoulou MP, Y.J. (2008). Osteoclastogenesis - Current knowledge and future perspectives. J Musculoskelet Neuronal Interact 8, 204-216.
    Yeon, J.T., Choi, S.W., Ryu, B.J., Kim, K.J., Lee, J.Y., Byun, B.J., Son, Y.J., and Kim, S.H. (2015). Praeruptorin a inhibits in vitro migration of preosteoclasts and in vivo bone erosion, possibly due to its potential to target calmodulin. Journal of natural products 78, 776-782.
    Zhang, Y., Zhou, Z.H., Bugge, T.H., and Wahl, L.M. (2007). Urokinase-Type Plasminogen Activator Stimulation of Monocyte Matrix Metalloproteinase-1 Production Is Mediated by Plasmin-Dependent Signaling through Annexin A2 and Inhibited by Inactive Plasmin. The Journal of Immunology 179, 3297-3304.
    Zhao, Q. (2007). Osteoclast differentiation and gene regulation. Frontiers in Bioscience 12, 2519.

    無法下載圖示 校內:2020-08-28公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE