簡易檢索 / 詳目顯示

研究生: 羅千祥
Luo, Qian-Xiang
論文名稱: 研究氧化鍶異質催化轉酯化反應中皂化現象之抑制方法
Study in Suppression of Saponification in SrO Heterogeneous-catalyzed Transesterification
指導教授: 許文東
Hsu, Wen-Dung
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 72
中文關鍵詞: 生質柴油轉酯化皂化現象固態反應氧化鍶矽酸鍶
外文關鍵詞: Biodiesel, Transesterification, Saponification, Solid-state, Strontium oxide, Strontium silicate
相關次數: 點閱:97下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在能源危機越趨嚴重的世代,在所有替代能源中,生質柴油為最適用於取代一般柴油的燃料,而成為研究重點。一般生質柴油的製程會使用同質鹼性催化,雖然最為快速且低成本,但同時有產物難以純化等難題。異質鹼性催化除了反應速率能與同質鹼性催化相比以外,回收與汙染的問題得以解決,但催化劑表面的皂化現象也使催化劑的再使用性不佳。
    本研究基於先前研究中使用氧化鍶作為催化劑進行微波加熱轉酯化實驗之結果,以及氧化鍶表面吸附現象之結果,希望藉由低成本且快速的方法,來改善皂化現象。其一係採用固態反應法將二氧化矽與碳酸鍶粉末反應變為矽酸類化合物,在減少其溶出現象的同時,亦能保有其反應性。
    以XRD分析以固態反應法合成之鍶矽化合物,確定可成功合成出氧化鍶、124-矽酸鍶(SiSr2O4)及它們不同比例的兩相生成物,然而其與水分反應的穩定度是需要再進一步改善的問題。在3%催化劑量下,不同鍶莫耳比例的生成物(0.95Sr, 0.9Sr, 0.85Sr, 0.7Sr)與純氧化鍶相比,皆達到超過90%以上的轉酯率,而純124-矽酸鍶則幾乎沒有催化轉酯化的效果。然而富含124-矽酸鍶的0.7Sr卻擁有高的轉酯率,此現象之成因由XRD的特徵峰值位移推斷,其氧化鍶有微量矽的間隙摻雜,以Cooperative acid-base mixed oxide的機制提高了轉酯率。
    為測定催化劑對皂化的耐久度,將催化劑的量降至0.1%,並以BET測得之表面積將各別催化劑的量標準化,然而其轉酯率結果僅與加入的量成正比,無從比較得知催化劑抑制皂化的能力,唯一可觀察到的是氧化鍶在長時間因為嚴重溶出使轉酯率大幅上升,而其他本研究合成的鍶矽催化劑則沒有此現象,可以推斷摻入矽元素後使得溶出穩定度上升。

    Saponification, which is caused by leaching induced by the water adsorption on SrO surface, is the major problem for application. As a result, we utilize solid-state method to synthesize strontium silicate compound to improve its stability in this study. We mix different proportions of SrCO3 and SiO2 powder as precursors according to SrO/SiO2 phase diagram, then calcine them at 1150C for 6h which derived from the parameter optimization. Judged from XRD results, we can synthesize SrO/SiSr2O4 two-phase compounds (0.95/0.9/0.85/0.7Sr) and single-phase SiSr2O4, but not SiSr3O5 due to the furnace limitation. Also, we can observe major peak shifts of SrO toward higher angle in 0.95Sr and lower angle in 0.9/0.85Sr, and minor ones toward lower angle in 0.7Sr. Commercial SrO has 90% biodiesel yield while 0.95/0.9/0.85/0.7Sr achieve the same yield at 3% catalyst for 30 minute, but SiSr2O4 are barely effective for transesterification. We can assume that the significant yield of 0.7Sr is due to the interstitial doping of silicon into SrO from the peak shifting. For durability, first we perform a catalyst amount test on commercial SrO and get a limit of 0.1%, then we normalize that amount of catalysts by their specific surface area. However, the trend shows the yields are only proportional to the amount, as a result we can’t decide which one is the best for suppressing leaching. But if we take closer look at SrO, the yield goes up sharply after 60min due to dissolving into reactants, and we can further confirm this from the fact that there is no SrO left for higher reaction time. Compared with the strontium silicates we synthesized, they still remain stable for longer time, so we can say that they are more resistant to leaching than pure SrO.

    摘要 I Abstract II 誌謝 XIV 目錄 XV 表目錄 XVII 圖目錄 XVIII 第一章 前言 1 第二章 文獻回顧 5 2.1 生質柴油 5 2.1.1 發展歷史 5 2.1.2 種類與規範 6 2.1.3 製造與處理 10 2.1.4 產業近況與未來展望 13 2.2 轉酯化反應 17 2.2.1 轉酯化反應機制 18 2.2.2 轉酯化之催化劑種類 20 2.3 異質鹼性催化劑之合成與比較 27 2.4 先前研究結果與動機發展 35 2.4.1 連續流轉酯化實驗皂化現象之探討 35 2.4.2 氧化鍶表面吸附現象之計算 38 2.5 鹼金族及鹼土族金屬矽酸類化合物 39 第三章 實驗方法 42 3.1 實驗架構 42 3.2 實驗藥品 43 3.3 實驗設備 44 3.4 實驗方法 45 3.4.1 鍶矽化合物催化劑之合成 45 3.4.2 鍶矽化合物催化劑之鑑定 46 3.4.3 轉酯化反應 46 3.4.4 轉酯率分析 47 第四章 結果與討論 50 4.1 氧化鍶與矽酸鍶煆燒參數討論 50 4.2 矽酸鍶合成結果討論 53 4.3 不同鍶矽比之催化劑產物結果分析 54 4.4 不同鍶矽比之催化劑轉酯率比較 58 4.5 不同鍶矽比之催化劑轉酯耐久度比較 60 第五章 結論 64 參考文獻 65 附錄 70 A.1 界面活性劑 70 A.2 添加界面活性劑對轉酯率之影響 71 表1- 1 生質柴油與石化柴油部分性質比較[4] 4 表1- 2 生質柴油B100與B20之廢棄物排放量與石化柴油差異比較[4] 4 表2- 1 常見植物油的脂肪酸組成[2, 7] 6 表2- 2 台灣生質柴油標準CNS-15072(2007)[2] 8 表2- 3 傳統加熱與微波加熱能量消耗估計比較[3] 12 表2- 5 各地區廢食用油產出量(2008)[3] 15 表2- 6 研究文獻中建議之同質鹼性催化轉酯化的油脂原料之FFA上限[3] 23 表2- 7 MgO-KOH、MgO-NaOH、MgO-CeO2、MgO轉酯率比較[25] 27 表2- 8不同Mg比例的水滑石與純Al2O3、MgO轉酯率比較[29] 32 表2- 9 異質鹼性催化劑合成之合成方法、轉酯化實驗參數及轉酯率比較 33 表2- 10 鹼土族金屬氧化物之水熱法參數比較 34 表3- 1 本研究使用之內標法GC分析參數[39] 48 表3- 2 本研究使用之檢量線法GC分析參數[21] 49 表4- 1 不同鍶矽比催化劑之氧化鍶晶面特徵峰值2θ位移量 57 表4- 2 不同催化劑之BET表面積與等效添加量 61 表A- 1 添加1:1界面活性劑對不同參數的氧化鍶轉酯化之影響比較 71 圖1- 1 生質柴油的理論碳循環[1] 3 圖1- 2 2006年世界燃料總能源供應比例[3] 3 圖2- 1 使用不同油種為實驗油料來源的研究文獻數量比較[7] 7 圖2- 2 轉酯化反應之生質柴油製程[2] 11 圖2- 3 全球液態生質燃料產量趨勢[11] 13 圖2- 4全球液態生質燃料總產量前十六大國與歐盟二十八國(2013)[11] 14 圖2- 5 生質燃料產量成長預測趨勢[12] 14 圖2- 6 全球生質精煉市場比例分布(2007)[13] 16 圖2- 7 三酸甘油酯之轉酯化反應[14] 17 圖2- 8 轉酯化反應機制[15] 19 圖2- 9 三酸甘油酯之逐步轉酯化反應機制[15] 19 圖2- 10 同質酸性催化機制[4] 21 圖2- 11 酯化反應[18] 21 圖2- 12 同質鹼性催化反應機制[3] 24 圖2- 13 鹼性金屬氧化物異質催化劑表面結構[23] 25 圖2- 14 異質鹼性催化反應機制[24] 26 圖2- 15 (a)溴辛烷相對於CaO的重量濃度與轉酯率關係圖;(b)催化劑重量比與轉酯率關係圖;(c)醇油比與轉酯率關係圖;(d)改質後CaO未改質CaO轉酯率比較[26] 29 圖2- 16 SrO/CaO、SrO/SiO2、SrO在65℃條件下之轉酯率比較,以及SrO/CaO、SrO/SiO2在不同溫度下之轉酯率比較[27] 30 圖2- 17 鹼土族金屬氧化物轉酯率比較:(a)傳統加熱;(b)微波加熱[28] 31 圖2- 18 微波輔助轉酯化之連續流系統 36 圖2- 19 微波輔助氧化鍶顆粒轉酯化連續流之轉酯率及催化劑反應後狀況 36 圖2- 20 皂化反應與機制 37 圖2- 21 水與甲醇在氧化鍶(310)表面吸附之化學勢能Pourbaix diagram 38 圖2- 22 鈣矽化合物結構中的Cooperative acid-base mixed oxide[35] 39 圖2- 23 矽酸鈉經高溫煆燒之化學變化[36] 40 圖2- 24 煆燒過後之矽酸鍶對不同水含量之轉酯率[37] 40 圖2- 25 煆燒過後的矽酸鍶表面之水解反應[37] 41 圖3- 1 鍶矽氧化物之二元相圖[38] 46 圖3- 2 本研究使用的內標法之大豆油產物範例與轉酯率公式[39, 40] 48 圖3- 3 本研究使用的檢量線法GC分析之轉酯率公式 49 圖4- 1 經不同溫度時間參數組合煆燒生成之氧化鍶XRD圖 50 圖4- 2 同時間下經不同溫度煆燒生成之124-矽酸鍶XRD圖 51 圖4- 3 同溫度下經不同時間煆燒生成之124-矽酸鍶XRD圖 52 圖4- 4 以鍶矽比3:1在1150℃煆燒6小時後之XRD結果 53 圖4- 5 0.95Sr之中間相產物XRD 55 圖4- 6 0.9Sr之中間相產物XRD 55 圖4- 7 0.85Sr之中間相產物XRD 56 圖4- 8 0.7Sr之中間相產物XRD 56 圖4- 9 催化劑0.95Sr經五日放置後之XRD特徵峰值變化 57 圖4- 10 個別催化劑之轉酯率比較(催化劑量3%、反應時間30min) 59 圖4- 11 個別催化劑之轉酯率對於時間關係圖(催化劑量3%) 59 圖4- 12 轉酯耐久度之催化劑添加量測試結果 61 圖4- 13 個別催化劑經表面積標準化之轉酯化耐久度比較 62 圖4- 14 等量條件反應下的催化劑殘留狀況之比較圖 63 圖A- 1 界面活性劑之種類[42] 70 圖A- 2不同界面活性劑添加比例之轉酯率-時間關係圖 72

    1. Peterson, C.L. and T. Hustrulid, CARBON CYCLE FOR RAPESEED OIL BIODIESEL FUELS. Biomass and Bioenergy, 1998. 14(2): p. 91-101.
    2. 謝志誠, 生質柴油之技術與文獻探討 2007.
    3. Lam, M.K., K.T. Lee, and A.R. Mohamed, Homogeneous, heterogeneous and enzymatic catalysis for transesterification of high free fatty acid oil (waste cooking oil) to biodiesel: a review. Biotechnology advances, 2010. 28(4): p. 500-518.
    4. Lotero, E., et al., Synthesis of biodiesel via acid catalysis. Industrial & engineering chemistry research, 2005. 44(14): p. 5353-5363.
    5. History of Biodiesel. 2008; Available from: http://www.mybiodiesel.com/biodiesel-history.php.
    6. Gerpen, J.V. History of Biodiesel. 2012; Available from: http://articles.extension.org/pages/27135/history-of-biodiesel.
    7. Pinto, A.C., et al., Biodiesel: an overview. Journal of the Brazilian Chemical Society, 2005. 16(6B): p. 1313-1330.
    8. Pryde, E., Vegetable oils as diesel fuels: overview. Journal of the American Oil Chemists' Society, 1983. 60(8): p. 1557-1558.
    9. Schwab, A., M. Bagby, and B. Freedman, Preparation and properties of diesel fuels from vegetable oils. Fuel, 1987. 66(10): p. 1372-1378.
    10. Groisman, Y. and A. Gedanken, Continuous flow, circulating microwave system and its application in nanoparticle fabrication and biodiesel synthesis. The Journal of Physical Chemistry C, 2008. 112(24): p. 8802-8808.
    11. RENEWABLES 2015 GLOBAL STATUS REPORT. 2015, REN21.
    12. 楊皓荃, 從國際生質燃料市場現況與趨勢尋思我國產業之發展策略. 2016, 核能研究所源經濟及策略中心.
    13. 謝志強, 全球生質精煉產業發展現況與趨勢. 2008, 工研院產經中心.
    14. Singh, A.K. and S.D. Fernando, Transesterification of soybean oil using heterogeneous catalysts. Energy & Fuels, 2008. 22(3): p. 2067-2069.
    15. Ioanna Anastasia Fragkou, W.M., Production of biodiesel from waste cooking oil - A catalytic approach. 2014, Division of chemical and forensic sciences, University of Bradford.
    16. Srivastava, A. and R. Prasad, Triglycerides-based diesel fuels. Renewable and sustainable energy reviews, 2000. 4(2): p. 111-133.
    17. Liu, K.-S., Preparation of fatty acid methyl esters for gas-chromatographic analysis of lipids in biological materials. Journal of the American Oil Chemists’ Society, 1994. 71(11): p. 1179-1187.
    18. Borges, M. and L. Díaz, Recent developments on heterogeneous catalysts for biodiesel production by oil esterification and transesterification reactions: a review. Renewable and Sustainable Energy Reviews, 2012. 16(5): p. 2839-2849.
    19. Jitputti, J., et al., Transesterification of crude palm kernel oil and crude coconut oil by different solid catalysts. Chemical Engineering Journal, 2006. 116(1): p. 61-66.
    20. Chen, H., et al., Biodiesel production by the transesterification of cottonseed oil by solid acid catalysts. Frontiers of Chemical Engineering in China, 2007. 1(1): p. 11-15.
    21. 陳祺凡, ANA型沸石觸媒催化大豆油轉酯化反應之研究, in 化學工程學系. 2015, 國立成功大學.
    22. Zhang, S., et al., Rapid microwave-assisted transesterification of yellow horn oil to biodiesel using a heteropolyacid solid catalyst. Bioresource technology, 2010. 101(3): p. 931-936.
    23. Refaat, A., Biodiesel production using solid metal oxide catalysts. International Journal of Environmental Science & Technology, 2011. 8(1): p. 203-221.
    24. Chouhan, A.S. and A. Sarma, Modern heterogeneous catalysts for biodiesel production: A comprehensive review. Renewable and Sustainable Energy Reviews, 2011. 15(9): p. 4378-4399.
    25. Manríquez-Ramírez, M., et al., Advances in the transesterification of triglycerides to biodiesel using MgO–NaOH, MgO–KOH and MgO–CeO 2 as solid basic catalysts. Catalysis today, 2013. 212: p. 23-30.
    26. Tang, Y., et al., Biodiesel production from vegetable oil by using modified CaO as solid basic catalysts. Journal of Cleaner Production, 2013. 42: p. 198-203.
    27. Chen, C.-L., et al., Biodiesel synthesis via heterogeneous catalysis using modified strontium oxides as the catalysts. Bioresource technology, 2012. 113: p. 8-13.
    28. Patil, P., et al., Transesterification kinetics of Camelina sativa oil on metal oxide catalysts under conventional and microwave heating conditions. Chemical engineering journal, 2011. 168(3): p. 1296-1300.
    29. Cantrell, D.G., et al., Structure-reactivity correlations in MgAl hydrotalcite catalysts for biodiesel synthesis. Applied Catalysis A: General, 2005. 287(2): p. 183-190.
    30. Li, X., et al., Pore size and surface area control of MgO nanostructures using a surfactant-templated hydrothermal process: High adsorption capability to azo dyes. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2012. 408: p. 79-86.
    31. Yan, L., et al., Formation of rod-like Mg (OH) 2 nanocrystallites under hydrothermal conditions and the conversion to MgO nanorods by thermal dehydration. Materials Chemistry and Physics, 2002. 76(2): p. 119-122.
    32. Shahid, M., et al., Solvent controlled synthesis of CaO-MgO nanocomposites and their application in the photodegradation of organic pollutants of industrial waste. Russian Journal of Physical Chemistry A, 2014. 88(5): p. 836-844.
    33. 楊榮瑋, 利用微波製備並以氧化鍶催化將廢食用油進行生質柴油轉化效能之探討, in 材料科學與工程學系. 2015, 國立成功大學.
    34. 邱芳瑜, 第一原理計算研究轉酯化初期反應:水與甲醇在氧化鍶表面上的吸附行為, in 材料科學與工程學系. 2015, 國立成功大學.
    35. Lin, V.S.-Y., et al., Porous silica and metal oxide composite-based catalysts for conversion of fatty acids and oils to biodiesel. 2010, US Patents.
    36. Guo, F., et al., Transesterification mechanism of soybean oil to biodiesel catalyzed by calcined sodium silicate. Fuel, 2012. 93: p. 468-472.
    37. Guo, F., et al., Calcined sodium silicate as solid base catalyst for biodiesel production. Fuel Processing Technology, 2010. 91(3): p. 322-328.
    38. Cenerino, G., P. Chevalier, and E. Fischer, THERMODYNAMIC CALCULATION OF PHASE EQUILIBRIA IN OXIDE COMPLEX SYSTEMS: PREDICTION OF SOME SELECTED FISSION PRODUCTS Jx i (BaO, SrO, La2O3) RELEASES* 3 KfK, Karlsruhe, Germany. 1992.
    39. James D. McCurry, P.D., GC Analysis of Total Fatty Acid Methyl Esters (FAME) and Methyl Linolenate in Biodiesel Using the Revised EN14103:2011 Method. 2012, Agilent Technologies.
    40. Timothy Ruppel, T.H., Fatty Acid Methyl Esters in B100 Biodiesel by Gas Chromatography (Modified EN 14103). 2012, PerkinElmer, Inc.
    41. Nakamura, Y., et al. Synthesis and luminescence properties of Eu2+-activated Sr3SiO5 phosphors. in IOP Conference Series: Materials Science and Engineering. 2011. IOP Publishing.
    42. Surfactant. Available from: https://en.wikipedia.org/wiki/Surfactant.

    下載圖示 校內:2021-09-06公開
    校外:2021-09-06公開
    QR CODE