| 研究生: |
羅千祥 Luo, Qian-Xiang |
|---|---|
| 論文名稱: |
研究氧化鍶異質催化轉酯化反應中皂化現象之抑制方法 Study in Suppression of Saponification in SrO Heterogeneous-catalyzed Transesterification |
| 指導教授: |
許文東
Hsu, Wen-Dung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 72 |
| 中文關鍵詞: | 生質柴油 、轉酯化 、皂化現象 、固態反應 、氧化鍶 、矽酸鍶 |
| 外文關鍵詞: | Biodiesel, Transesterification, Saponification, Solid-state, Strontium oxide, Strontium silicate |
| 相關次數: | 點閱:97 下載:8 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在能源危機越趨嚴重的世代,在所有替代能源中,生質柴油為最適用於取代一般柴油的燃料,而成為研究重點。一般生質柴油的製程會使用同質鹼性催化,雖然最為快速且低成本,但同時有產物難以純化等難題。異質鹼性催化除了反應速率能與同質鹼性催化相比以外,回收與汙染的問題得以解決,但催化劑表面的皂化現象也使催化劑的再使用性不佳。
本研究基於先前研究中使用氧化鍶作為催化劑進行微波加熱轉酯化實驗之結果,以及氧化鍶表面吸附現象之結果,希望藉由低成本且快速的方法,來改善皂化現象。其一係採用固態反應法將二氧化矽與碳酸鍶粉末反應變為矽酸類化合物,在減少其溶出現象的同時,亦能保有其反應性。
以XRD分析以固態反應法合成之鍶矽化合物,確定可成功合成出氧化鍶、124-矽酸鍶(SiSr2O4)及它們不同比例的兩相生成物,然而其與水分反應的穩定度是需要再進一步改善的問題。在3%催化劑量下,不同鍶莫耳比例的生成物(0.95Sr, 0.9Sr, 0.85Sr, 0.7Sr)與純氧化鍶相比,皆達到超過90%以上的轉酯率,而純124-矽酸鍶則幾乎沒有催化轉酯化的效果。然而富含124-矽酸鍶的0.7Sr卻擁有高的轉酯率,此現象之成因由XRD的特徵峰值位移推斷,其氧化鍶有微量矽的間隙摻雜,以Cooperative acid-base mixed oxide的機制提高了轉酯率。
為測定催化劑對皂化的耐久度,將催化劑的量降至0.1%,並以BET測得之表面積將各別催化劑的量標準化,然而其轉酯率結果僅與加入的量成正比,無從比較得知催化劑抑制皂化的能力,唯一可觀察到的是氧化鍶在長時間因為嚴重溶出使轉酯率大幅上升,而其他本研究合成的鍶矽催化劑則沒有此現象,可以推斷摻入矽元素後使得溶出穩定度上升。
Saponification, which is caused by leaching induced by the water adsorption on SrO surface, is the major problem for application. As a result, we utilize solid-state method to synthesize strontium silicate compound to improve its stability in this study. We mix different proportions of SrCO3 and SiO2 powder as precursors according to SrO/SiO2 phase diagram, then calcine them at 1150C for 6h which derived from the parameter optimization. Judged from XRD results, we can synthesize SrO/SiSr2O4 two-phase compounds (0.95/0.9/0.85/0.7Sr) and single-phase SiSr2O4, but not SiSr3O5 due to the furnace limitation. Also, we can observe major peak shifts of SrO toward higher angle in 0.95Sr and lower angle in 0.9/0.85Sr, and minor ones toward lower angle in 0.7Sr. Commercial SrO has 90% biodiesel yield while 0.95/0.9/0.85/0.7Sr achieve the same yield at 3% catalyst for 30 minute, but SiSr2O4 are barely effective for transesterification. We can assume that the significant yield of 0.7Sr is due to the interstitial doping of silicon into SrO from the peak shifting. For durability, first we perform a catalyst amount test on commercial SrO and get a limit of 0.1%, then we normalize that amount of catalysts by their specific surface area. However, the trend shows the yields are only proportional to the amount, as a result we can’t decide which one is the best for suppressing leaching. But if we take closer look at SrO, the yield goes up sharply after 60min due to dissolving into reactants, and we can further confirm this from the fact that there is no SrO left for higher reaction time. Compared with the strontium silicates we synthesized, they still remain stable for longer time, so we can say that they are more resistant to leaching than pure SrO.
1. Peterson, C.L. and T. Hustrulid, CARBON CYCLE FOR RAPESEED OIL BIODIESEL FUELS. Biomass and Bioenergy, 1998. 14(2): p. 91-101.
2. 謝志誠, 生質柴油之技術與文獻探討 2007.
3. Lam, M.K., K.T. Lee, and A.R. Mohamed, Homogeneous, heterogeneous and enzymatic catalysis for transesterification of high free fatty acid oil (waste cooking oil) to biodiesel: a review. Biotechnology advances, 2010. 28(4): p. 500-518.
4. Lotero, E., et al., Synthesis of biodiesel via acid catalysis. Industrial & engineering chemistry research, 2005. 44(14): p. 5353-5363.
5. History of Biodiesel. 2008; Available from: http://www.mybiodiesel.com/biodiesel-history.php.
6. Gerpen, J.V. History of Biodiesel. 2012; Available from: http://articles.extension.org/pages/27135/history-of-biodiesel.
7. Pinto, A.C., et al., Biodiesel: an overview. Journal of the Brazilian Chemical Society, 2005. 16(6B): p. 1313-1330.
8. Pryde, E., Vegetable oils as diesel fuels: overview. Journal of the American Oil Chemists' Society, 1983. 60(8): p. 1557-1558.
9. Schwab, A., M. Bagby, and B. Freedman, Preparation and properties of diesel fuels from vegetable oils. Fuel, 1987. 66(10): p. 1372-1378.
10. Groisman, Y. and A. Gedanken, Continuous flow, circulating microwave system and its application in nanoparticle fabrication and biodiesel synthesis. The Journal of Physical Chemistry C, 2008. 112(24): p. 8802-8808.
11. RENEWABLES 2015 GLOBAL STATUS REPORT. 2015, REN21.
12. 楊皓荃, 從國際生質燃料市場現況與趨勢尋思我國產業之發展策略. 2016, 核能研究所源經濟及策略中心.
13. 謝志強, 全球生質精煉產業發展現況與趨勢. 2008, 工研院產經中心.
14. Singh, A.K. and S.D. Fernando, Transesterification of soybean oil using heterogeneous catalysts. Energy & Fuels, 2008. 22(3): p. 2067-2069.
15. Ioanna Anastasia Fragkou, W.M., Production of biodiesel from waste cooking oil - A catalytic approach. 2014, Division of chemical and forensic sciences, University of Bradford.
16. Srivastava, A. and R. Prasad, Triglycerides-based diesel fuels. Renewable and sustainable energy reviews, 2000. 4(2): p. 111-133.
17. Liu, K.-S., Preparation of fatty acid methyl esters for gas-chromatographic analysis of lipids in biological materials. Journal of the American Oil Chemists’ Society, 1994. 71(11): p. 1179-1187.
18. Borges, M. and L. Díaz, Recent developments on heterogeneous catalysts for biodiesel production by oil esterification and transesterification reactions: a review. Renewable and Sustainable Energy Reviews, 2012. 16(5): p. 2839-2849.
19. Jitputti, J., et al., Transesterification of crude palm kernel oil and crude coconut oil by different solid catalysts. Chemical Engineering Journal, 2006. 116(1): p. 61-66.
20. Chen, H., et al., Biodiesel production by the transesterification of cottonseed oil by solid acid catalysts. Frontiers of Chemical Engineering in China, 2007. 1(1): p. 11-15.
21. 陳祺凡, ANA型沸石觸媒催化大豆油轉酯化反應之研究, in 化學工程學系. 2015, 國立成功大學.
22. Zhang, S., et al., Rapid microwave-assisted transesterification of yellow horn oil to biodiesel using a heteropolyacid solid catalyst. Bioresource technology, 2010. 101(3): p. 931-936.
23. Refaat, A., Biodiesel production using solid metal oxide catalysts. International Journal of Environmental Science & Technology, 2011. 8(1): p. 203-221.
24. Chouhan, A.S. and A. Sarma, Modern heterogeneous catalysts for biodiesel production: A comprehensive review. Renewable and Sustainable Energy Reviews, 2011. 15(9): p. 4378-4399.
25. Manríquez-Ramírez, M., et al., Advances in the transesterification of triglycerides to biodiesel using MgO–NaOH, MgO–KOH and MgO–CeO 2 as solid basic catalysts. Catalysis today, 2013. 212: p. 23-30.
26. Tang, Y., et al., Biodiesel production from vegetable oil by using modified CaO as solid basic catalysts. Journal of Cleaner Production, 2013. 42: p. 198-203.
27. Chen, C.-L., et al., Biodiesel synthesis via heterogeneous catalysis using modified strontium oxides as the catalysts. Bioresource technology, 2012. 113: p. 8-13.
28. Patil, P., et al., Transesterification kinetics of Camelina sativa oil on metal oxide catalysts under conventional and microwave heating conditions. Chemical engineering journal, 2011. 168(3): p. 1296-1300.
29. Cantrell, D.G., et al., Structure-reactivity correlations in MgAl hydrotalcite catalysts for biodiesel synthesis. Applied Catalysis A: General, 2005. 287(2): p. 183-190.
30. Li, X., et al., Pore size and surface area control of MgO nanostructures using a surfactant-templated hydrothermal process: High adsorption capability to azo dyes. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2012. 408: p. 79-86.
31. Yan, L., et al., Formation of rod-like Mg (OH) 2 nanocrystallites under hydrothermal conditions and the conversion to MgO nanorods by thermal dehydration. Materials Chemistry and Physics, 2002. 76(2): p. 119-122.
32. Shahid, M., et al., Solvent controlled synthesis of CaO-MgO nanocomposites and their application in the photodegradation of organic pollutants of industrial waste. Russian Journal of Physical Chemistry A, 2014. 88(5): p. 836-844.
33. 楊榮瑋, 利用微波製備並以氧化鍶催化將廢食用油進行生質柴油轉化效能之探討, in 材料科學與工程學系. 2015, 國立成功大學.
34. 邱芳瑜, 第一原理計算研究轉酯化初期反應:水與甲醇在氧化鍶表面上的吸附行為, in 材料科學與工程學系. 2015, 國立成功大學.
35. Lin, V.S.-Y., et al., Porous silica and metal oxide composite-based catalysts for conversion of fatty acids and oils to biodiesel. 2010, US Patents.
36. Guo, F., et al., Transesterification mechanism of soybean oil to biodiesel catalyzed by calcined sodium silicate. Fuel, 2012. 93: p. 468-472.
37. Guo, F., et al., Calcined sodium silicate as solid base catalyst for biodiesel production. Fuel Processing Technology, 2010. 91(3): p. 322-328.
38. Cenerino, G., P. Chevalier, and E. Fischer, THERMODYNAMIC CALCULATION OF PHASE EQUILIBRIA IN OXIDE COMPLEX SYSTEMS: PREDICTION OF SOME SELECTED FISSION PRODUCTS Jx i (BaO, SrO, La2O3) RELEASES* 3 KfK, Karlsruhe, Germany. 1992.
39. James D. McCurry, P.D., GC Analysis of Total Fatty Acid Methyl Esters (FAME) and Methyl Linolenate in Biodiesel Using the Revised EN14103:2011 Method. 2012, Agilent Technologies.
40. Timothy Ruppel, T.H., Fatty Acid Methyl Esters in B100 Biodiesel by Gas Chromatography (Modified EN 14103). 2012, PerkinElmer, Inc.
41. Nakamura, Y., et al. Synthesis and luminescence properties of Eu2+-activated Sr3SiO5 phosphors. in IOP Conference Series: Materials Science and Engineering. 2011. IOP Publishing.
42. Surfactant. Available from: https://en.wikipedia.org/wiki/Surfactant.