| 研究生: |
邱乾艷 Chiu, Chien-Yen |
|---|---|
| 論文名稱: |
三維殼元素於有限元素法之架構 Architecture of An Four Node Degenerated Shell Element in Finite Element Analysis |
| 指導教授: |
朱聖浩
Ju, Shan-Haw |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2002 |
| 畢業學年度: | 90 |
| 語文別: | 英文 |
| 論文頁數: | 91 |
| 中文關鍵詞: | 幾何非線性 、座標轉換矩陣 、AN 程式 、有限元素法 、閉鎖 、假設應變法 、材料非線性 、殼元素 |
| 外文關鍵詞: | assumed natural strain, degenerated shell element, finite element method, transformation matrix., geometric nonlinear, material nonlinear, locking, AN program |
| 相關次數: | 點閱:130 下載:8 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
AN程式中一直缺少能準確分析剪力牆及殼結構之殼元素,本文擬採用既有的有限殼元素理論擇優利用,並將新殼元素開發取代原本AN程式中之殼元素。首先使用假設應變法(ASSUMEND STRAIN METHOD)解決閉鎖(LOCKING)之問題,所有應變皆在自然座標(NATURAL COORDINATE SYSTEM)下假設完成,假設橫向剪應變(ASSUMED TRANSVERSE SHEAR STRAIN)為避免剪力閉鎖(SHEAR LOCKING),假設膜應變(ASSUMED MEMBRANE STRAIN)為減輕膜閉鎖(MEMBRANE LOCKING)並可提升膜彎曲(MEMBRANE BENDING)的精度,彎曲應變中考慮厚度方向之高階項,可更準確分析具有厚度之殼結構。此外考慮大變形,使用牛頓拉普生法解非線性問題,並配合FLOW THOERY作為彈塑性分析,以及採用VON MISES CRIERION作為破壞準則。從測試結果確實可看出此殼元素適用之多樣性,及其合理收斂、準確性,這將激勵往後做更真實的剪力牆分析模式。
In AN program (National Cheng-Kung University for a project from the National Science Council), shell element is a lack of the powerful element to analysis the shear walls, and shell-like structures. This thesis proposes a new four-node shell element with assumed strain method to improve the origin shell element in AN program. All the strains are defined and assumed in the natural coordinate system. The assumed transverse shear strains are applied to avoid the shear locking issue. The assumed membrane strains are used to alleviate the membrane locking problem and improve the membrane bending performance. The bending strains and the transverse shear strains contain high order terms of , and it will be more perfect to apply to a wide range of shell problems, i.e. thin, thick, and laminated composite shells. Moreover, for geometric nonlinear analysis, the nonlinear equilibrium equations are solved by Newton-Raphson method, the flow theory is used for elastic-plastic problem and the von Mises criterion is the failure principle. Several examples in this thesis demonstrate that, the versatility to apply and the reasonable accuracy. It will encourage one to find out the more actual model to inquiry shear walls.
1. Ahmad, S., Irons, B.M. and Zienkiewics, O.C., ’Analysis of thick and thin shell structures by curved finite elements’, Int. J. Numer. Methods. Eng., 2, 419-459, 1970.
2. Bathe, K. J., ‘Finite Element Procedures In Engineering Analysis’, Prentice-Hall International, M.I.T., Chap. 6, 1982.
3. Bathe, K. J., Dvorkin, E. N. and Ho, L.W., ’Our discrete-Kirchhoff and isoparameteric shell elements for nonlinear analysis- an assessment’, J. Comput. Struct., 16, 89-98, 1983.
4. Bathe, K. J., ‘Finite Element Procedures’, Prentice-Hall International, 1996.
5. Belytschko, T. and Leviathan, I., ‘Physical stabilization of the 4-node shell element with one point quadrature’, Comput. Methods. Appl. Mech. Engng., 113, 321-350, 1994.
6. Crisfield, M., ‘Finite Elements on Solution Procedures for structural Analysis, I, Linear Analysis’, Pineridge, U.K., 1986.
7. Choi, C. K. and Paik, J. G., ‘An efficient four node degenerated shell element based on the assumed covariant strain’, Struct. Engng. Mech., 2(1), 17-34, 1994.
8. Choi, C. K. and Paik, J. G., ‘An efficient four node degenerated shell element for geometrically nonlinear analysis’, Thin-wall Struct., 24, 261-283, 1996.
9. Cook, R. D., Malkus, D. S. and Plesha, M. E., ‘Concept And Applications of Finite Element Analysis’, JOHN WILEY & SONS, Madison, 1989.
10. Dvorkin, E.N. and Bathe, K.J., ‘A continuum mechanics based four-node shell element for general non-linear analysis’, Engng. Comput., 1, 77-88, 1984.
11. Huang, H. C., ‘A new nine node degenerated shell element with enhanced membrane and shear interpolation’, Int. J. Numer. Methods. Eng., 22, 73-92, 1986.
12. Hughes, TJR and Liu, W.K., ’Nonlinear finite element analysis of shells: Part I. Three-dimension shell’, Comput. Methods. Appl. Mech. Engng. , 26, 331 – 362, 1981.
13. Hughes, TJR and Liu, W.K., ’Nonlinear finite element analysis of shells: Part II. Two-dimension shell’, Comput. Methods. Appl. Mech. Engng. , 27, 167 – 181, 1981.
14. Hughes, TJR, ‘The Finite Element Method’, Prentice-Hall, Englewood Cliffs, N.J., 1987.
15. Jang, J. and Pinsky, P.M., ‘An assumed covariant based 9-node shell element’, Int. J. Num. Meth. Engng, 24, 2389-2411, 1987.
16. Ju, S. H., ‘Creep-fatigue analysis of solder joints’, Ph.D. Thesis, University of Wisconsin-Madison, 1993.
17. Ju, S. H., NSP program, ‘Development a nonlinear finite element program with rigid link and contact element’, Report of NSC in R.O.C., NSC-86-2213-E-006-063, 66-81, 1997.
18. Kim, J. H. and Lee, B. C., ‘A four-node degenerated shell element with drilling degrees of freedom’, Struct. Engng. Mech., 6(8), 921-937, 1998.
19. Park, K. C. and Stanley, G. M., ‘A curved C0 shell element based on assumed natural-coordinate strains’, J. Appl. Mech., ASME, 53, 278-290, 1986.
20. Parisch, H., ‘An investigation of a finite rotation four node assumed strain shell element’, Int. J. Numer. Methods. Eng., 31, 127-150, 1991.
21. Prasad, N. S. and Sridhar, S., ‘Elasto-plastic analysis using shell element considering geometric and material nonlinearities’, Struct. Engng. Mech., 6(2), 217 –227, 1998.
22. Raju, K. R. and Rao, M. N. K., ‘Elastoplastic Behaviour of Unstuffened And Stiffened Steel Tubular T-Joints’, Comput. Struct. , 55(5), 907- 914, 1995.
23. Swaddiwudhipong, S. and Liu, Z. S., ‘Response of laminated composite plate and shells’, Comput. Struct. , 37(1), 21- 32, 1997.
24. Timoshenko, S. P. and Goodier, J. N., ‘Thoery of Elasticity’, McGraw-Hill, New York, 1951
25. Yang, H. T. Y., Saigal, S., Masud, A. and Kapania, R. K., ‘A Survey of Recent Shell Finite Element’, Int. J. Num. Meth. Engng., 47, 101-127, 2000.
26. Yeh, M. K., Lin, M. C. and Wu, W. T., ‘Bending buckling of an elasto-plastic cylindrical shell with a cutout’, Engng. Struct., 21, 996 –1005, 1999.
27. Zienkiewicz, O.C., Taylor, R.L. and Too, J.M.,’Reduced integration technique in general analysis of plates and shells’, Int. J. Numer. Methods. Eng., 3, 275-290, 1971.