| 研究生: |
陳怡華 Chen, Yi-Hua |
|---|---|
| 論文名稱: |
降低SIK3表現量導致胰臟癌細胞的葡萄糖代謝重編 Attenuation of Salt-inducible kinase 3 (SIK3) expression reprograms glucose metabolism in pancreatic duct adenocarcinoma |
| 指導教授: |
陳立宗
Chen, Li-Tzong |
| 共同指導教授: |
施能耀
Shih, Neng-Yao |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 分子醫學研究所 Institute of Molecular Medicine |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 英文 |
| 論文頁數: | 62 |
| 中文關鍵詞: | SIK3 、HDAC5 、胰臟癌 、代謝重編 |
| 外文關鍵詞: | SIK3, HDAC5, pancreatic duct adenocarcinoma, metabolic reprogramming |
| 相關次數: | 點閱:201 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
胰管腺癌(PDAC)被視為高度惡性的癌症,其五年存活率相較於各癌症亦是最低的。直至現在,胰管腺癌仍亟需找出早期診斷標的物及發展有效的抗癌藥物。由於胰管腺癌被認為是一種代謝失衡的疾病,針對其代謝依賴性的特點可能發展出具潛力的抗癌新策略。
SIK3隸屬於AMPK家族中的SIK次家族,過去我們實驗室發現SIK3做為卵巢癌的腫瘤相關抗原,能夠藉由活化c-Src-PI3K的機制來促進細胞週期G1/S進程,因而參與了卵巢癌的腫瘤生成。除此之外,近年的研究也發現SIK3能在小鼠肝細胞中調控葡萄糖的代謝。值得一提的是,動物實驗觀察到SIK3剔除小鼠表現出葡萄糖代謝異常而導致的酮尿,而該基因剔除小鼠可能由於脂肪組織的缺失而表現出瘦表型(lean phenotype),這與體重普遍減輕的具有第二型糖尿病的胰管腺癌患者通常具有廣泛的骨骼肌和脂肪組織損失這項特徵類似。因此,我們對於SIK3是否在胰管腺癌的代謝中扮演著什麼角色感到有興趣。
於此篇研究中我們首先利用免疫組織染色切片觀察到胰管腺癌的患者以及自發性生成胰臟癌的基因改造小鼠(利用Cre重組酶在胰臟組織中專一表現具有Kras第12密碼子點突變、KLF10以及p53剔除的轉殖小鼠,簡稱KKPC)的組織切片其SIK3表現較低。而透過TCGA資料庫中的胰管腺癌患者資料進行存活率分析,由存活曲線圖亦可以觀察到SIK3表現量被定義為低的患者,具有較差的預後。在細胞實驗,利用外送與SIK3序列互補的shRNA以及處理 pan-SIK抑制劑HG9-91-01,我們發現去除SIK3會在MIA PaCa-2與PANC-1胰管腺癌細胞中導致HDAC5的去磷酸化、及增加了糖質新生起始步驟之酵素-磷酸烯醇丙酮酸羧化激酶Pck1與葡萄糖載體蛋白Glut2的基因轉錄,但不影響CRTC2、CREB的活性。此機制最終增加了胰管腺癌細胞的反應糖解作用活性(extracellular acidification rate, ECAR)及瓦氏效應(Warburg effect)。而此種代謝異常現象在經過降低HDAC5表達後可被逆轉,代表HDAC5確實做為SIK3下游調控能量代謝的調節者。未來將可探討抑制HDAC5在KKPC小鼠中是否有做為治療手段的潛力。整體而言,在此篇研究中我們發現SIK3在PDAC中扮演透過調節葡萄糖代謝來控制細胞能量代謝的關鍵調控者。
Pancreatic duct adenocarcinoma (PDAC) is known as a highly-malignant cancer, and the patients have the lowest five-year survival rate among a variety of cancers. Obviously, discovery of early diagnostic markers and development of effective anticancer drugs are urgently needed. Since PDAC has been considered as a metabolic cancer type, many lines of evidence suggest that targeting its metabolic dependency may be a potential strategy for cancer treatment in future.
Salt-inducible kinase (SIK) subfamily belongs to the AMPK-related kinases (AMPK-RK). In this subfamily, there are three members identified, SIK1, SIK2, and SIK3. SIK3 was identified as a tumor-associated antigen by our lab, which is involved in ovarian tumorigenesis by promoting cell-cycle G1/S transition through activation of c-Src-PI3K signaling linkage. In addition, SIK3 was recently reported to play a pivotal role in the glucose metabolism of hepatocytes. Meanwhile, in vivo study demonstrated that mice with SIK3 loss developed ketonuria (glucose metabolic disorder) and displayed a lean phenotype attributed to the loss of adipose tissues. These features resemble to most of PDAC patients who have type II diabetes and suffer weight loss, characterized by the loss of extensive skeletal muscle and adipose tissues. Thus, we are interested in whether SIK3 plays a role in PDAC.
In the present study, immunohistochemical analysis of SIK3 expression in patients with PDAC and in mice with KLF10L/L/KrasG12D/p53L/L/pdx1-Cre (KKPC), a spontaneous PDAC mouse model, showed that SIK3 expression was significantly downregulated. The Kaplan–Meier analysis using the PDAC patient information from the TCGA database also demonstrated that lower expression of SIK3 was significantly correlated with a poorer prognosis in 5-year survival (P<0.05). Experiments using the SIK3-specific small hairpin interfering RNA (shRNA) technique and HG9-91-01 (pan-SIK inhibitor) demonstrated that attenuation of SIK3 could cause dephosphorylation of HDAC5, increase transcriptional activation of gluconeogenic gene Pck1 as well as glucose transporter gene Glut2, but not affect the activation of CRTC2, CREB in MIA PaCa-2 and PANC-1 PDAC cells. The signaling outcomes led to a marked increase in extracellular acidification rate (ECAR) and glycolytic activity (Warburg effect) in PDAC cells. However, these phenomena were reprogrammed by knockdown of HDAC5 expression, showing a consequent alteration in expression of its downstream gluconeogenic genes Pck1 and G6pc (encode PEPCK and G6Pase, respectively) as well as in the glucose transporter gene Glut2 of PDAC cells. In future, the therapeutic effect of HDAC5 inhibition will be closely examined in the KKPC mouse model. Collectively, SIK3 is a key regulator to control the balance of cellular energy metabolism by modulation of glucose utilization in PDAC.
1. Siegel, R.L., Miller, K.D., Jemal, A. (2018). Cancer statistics, 2018. CA Cancer J Clin 68(1): p. 7-30.
2. MOHW. (2018, June 15). Leading cause of death statistics analysis in 2017. Available from: https://dep.mohw.gov.tw/DOS/cp-3960-41756-113.html
3. Rahib, L., Smith, B.D., Aizenberg, R., Rosenzweig, A.B., Fleshman, J.M., Matrisian, L.M. (2014). Projecting cancer incidence and deaths to 2030: the unexpected burden of thyroid, liver, and pancreas cancers in the United States. Cancer Res 74(11): p. 2913-2921.
4. Maitra, A., Hruban, R.H. (2008). Pancreatic cancer. Annu Rev pathmechdis Mech Dis 3: p. 157-188.
5. Whatcott, C.J., Diep, C.H., Jiang, P., Watanabe, A., LoBello, J., Sima, C., Hostetter, G., Shepard, H.M., Von Hoff, D.D., Han, H. (2015). Desmoplasia in primary tumors and metastatic lesions of pancreatic cancer. Clinical Cancer Research 21(15): p. 3561-3568.
6. Liss, A.S., Thayer, S.P. (2012). Therapeutic targeting of pancreatic stroma. In P.J. Grippo, & H.G. Munshi (Eds.), Pancreatic Cancer and Tumor Microenvironment (chap. 9). Trivandrum, India: Transworld Research Network.
7. Phanstiel, O., IV. (2018). An overview of polyamine metabolism in pancreatic ductal adenocarcinoma. Int J Cancer 142(10): p. 1968-1976.
8. Feig, C., Gopinathan, A., Neesse, A., Chan, D.S., Cook, N., Tuveson, D.A. (2012). The pancreas cancer microenvironment. Clin Cancer Res 18(16): p. 4266-4276.
9. Olivares, O., Vasseur, S. (2016). Metabolic rewiring of pancreatic ductal adenocarcinoma: New routes to follow within the maze. Int J Cancer 138(4): p. 787-796.
10. Whatcott, C.J., Posner, R.G., Von Hoff, D.D., Han, H. (2012). Desmoplasia and chemoresistance in pancreatic cancer. In P.J. Grippo, & H.G. Munshi (Eds.), Pancreatic Cancer and Tumor Microenvironment (chap. 8). Trivandrum, India: Transworld Research Network.
11. Tuveson, D.A., Neoptolemos, J.P. (2012). Understanding metastasis in pancreatic cancer: a call for new clinical approaches. Cell 148(1-2): p. 21-23.
12. Cohen, R., Neuzillet, C., Tijeras-Raballand, A., Faivre, S., de Gramont, A., Raymond, E. (2015). Targeting cancer cell metabolism in pancreatic adenocarcinoma. Oncotarget 6(19): p. 16832.
13. Kong, F., Kong, X., Du, Y., Chen, Y., Deng, X., Zhu, J., Du, J., Li, L., Jia, Z., Xie, D. (2017). STK33 promotes growth and progression of pancreatic cancer as a critical downstream mediator of HIF1α. Cancer Research 77(24): p. 6851-6862.
14. Tesfaye, A.A., Kamgar, M., Azmi, A., Philip, P.A. (2018). The evolution into personalized therapies in pancreatic ductal adenocarcinoma: challenges and opportunities. Expert Rev Anticancer Ther 18(2): p. 131-148.
15. Guillaumond, F., Leca, J., Olivares, O., Lavaut, M.N., Vidal, N., Berthezene, P., Dusetti, N.J., Loncle, C., Calvo, E., Turrini, O., Iovanna, J.L., Tomasini, R., Vasseur, S. (2013). Strengthened glycolysis under hypoxia supports tumor symbiosis and hexosamine biosynthesis in pancreatic adenocarcinoma. Proc Natl Acad Sci U S A 110(10): p. 3919-3924.
16. Ravi, R., Mookerjee, B., Bhujwalla, Z.M., Sutter, C.H., Artemov, D., Zeng, Q., Dillehay, L.E., Madan, A., Semenza, G.L., Bedi, A. (2000). Regulation of tumor angiogenesis by p53-induced degradation of hypoxia-inducible factor 1α. Genes & Development 14(1): p. 34-44.
17. Semenza, G.L. (2010). HIF-1: upstream and downstream of cancer metabolism. Current Opinion in Genetics & Development 20(1): p. 51-56.
18. Vousden, K.H., Ryan, K.M. (2009). p53 and metabolism. Nature Reviews Cancer 9(10): p. 691-700.
19. Vander Heiden, M.G., Cantley, L.C., Thompson, C.B. (2009). Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324(5930): p. 1029-1033.
20. Cairns, R.A., Harris, I.S., Mak, T.W. (2011). Regulation of cancer cell metabolism. Nature Reviews Cancer 11(2): p. 85.
21. Wigmore, S., Plester, C., Richardson, R., Fearon, K. (1997). Changes in nutritional status associated with unresectable pancreatic cancer. British Journal of Cancer 75(1): p. 106.
22. Collisson, E.A., Sadanandam, A., Olson, P., Gibb, W.J., Truitt, M., Gu, S., Cooc, J., Weinkle, J., Kim, G.E., Jakkula, L., Feiler, H.S., Ko, A.H., Olshen, A.B., Danenberg, K.L., Tempero, M.A., Spellman, P.T., Hanahan, D., Gray, J.W. (2011). Subtypes of pancreatic ductal adenocarcinoma and their differing responses to therapy. Nat Med 17(4): p. 500-503.
23. Moffitt, R.A., Marayati, R., Flate, E.L., Volmar, K.E., Loeza, S.G., Hoadley, K.A., Rashid, N.U., Williams, L.A., Eaton, S.C., Chung, A.H., Smyla, J.K., Anderson, J.M., Kim, H.J., Bentrem, D.J., Talamonti, M.S., Iacobuzio-Donahue, C.A., Hollingsworth, M.A., Yeh, J.J. (2015). Virtual microdissection identifies distinct tumor- and stroma-specific subtypes of pancreatic ductal adenocarcinoma. Nat Genet 47(10): p. 1168-1178.
24. Bailey, P., Chang, D.K., Nones, K., Johns, A.L., Patch, A.M., Gingras, M.C., Miller, D.K., Christ, A.N., Bruxner, T.J., Quinn, M.C., Nourse, C., Murtaugh, L.C., Harliwong, I., Idrisoglu, S., Manning, S., Nourbakhsh, E., Wani, S., Fink, L., Holmes, O., Chin, V., Anderson, M.J., Kazakoff, S., Leonard, C., Newell, F., Waddell, N., Wood, S., Xu, Q., Wilson, P.J., Cloonan, N., Kassahn, K.S., Taylor, D., Quek, K., Robertson, A., Pantano, L., Mincarelli, L., Sanchez, L.N., Evers, L., Wu, J., Pinese, M., Cowley, M.J., Jones, M.D., Colvin, E.K., Nagrial, A.M., Humphrey, E.S., Chantrill, L.A., Mawson, A., Humphris, J., Chou, A., Pajic, M., Scarlett, C.J., Pinho, A.V., Giry-Laterriere, M., Rooman, I., Samra, J.S., Kench, J.G., Lovell, J.A., Merrett, N.D., Toon, C.W., Epari, K., Nguyen, N.Q., Barbour, A., Zeps, N., Moran-Jones, K., Jamieson, N.B., Graham, J.S., Duthie, F., Oien, K., Hair, J., Grutzmann, R., Maitra, A., Iacobuzio-Donahue, C.A., Wolfgang, C.L., Morgan, R.A., Lawlor, R.T., Corbo, V., Bassi, C., Rusev, B., Capelli, P., Salvia, R., Tortora, G., Mukhopadhyay, D., Petersen, G.M., Australian Pancreatic Cancer Genome Initiative, Munzy, D.M., Fisher, W.E., Karim, S.A., Eshleman, J.R., Hruban, R.H., Pilarsky, C., Morton, J.P., Sansom, O.J., Scarpa, A., Musgrove, E.A., Bailey, U.M., Hofmann, O., Sutherland, R.L., Wheeler, D.A., Gill, A.J., Gibbs, R.A., Pearson, J.V., Waddell, N., Biankin A.V., Grimmond, S.M. (2016). Genomic analyses identify molecular subtypes of pancreatic cancer. Nature 531(7592): p. 47-52.
25. Daemen, A., Peterson, D., Sahu, N., McCord, R., Du, X., Liu, B., Kowanetz, K., Hong, R., Moffat, J., Gao, M. (2015). Metabolite profiling stratifies pancreatic ductal adenocarcinomas into subtypes with distinct sensitivities to metabolic inhibitors. Proceedings of the National Academy of Sciences 112(32): p. E4410-E4417.
26. Lizcano, J.M., Göransson, O., Toth, R., Deak, M., Morrice, N.A., Boudeau, J., Hawley, S.A., Udd, L., Mäkelä, T.P., Hardie, D.G. (2004). LKB1 is a master kinase that activates 13 kinases of the AMPK subfamily, including MARK/PAR‐1. The EMBO Journal 23(4): p. 833-843.
27. Bright, N., Thornton, C., Carling, D. (2009). The regulation and function of mammalian AMPK‐related kinases. Acta Physiologica 196(1): p. 15-26.
28. Koo, S.-H., Flechner, L., Qi, L., Zhang, X., Screaton, R.A., Jeffries, S., Hedrick, S., Xu, W., Boussouar, F., Brindle, P. (2005). The CREB coactivator TORC2 is a key regulator of fasting glucose metabolism. Nature 437(7062): p. 1109.
29. Wang, B., Moya, N., Niessen, S., Hoover, H., Mihaylova, M.M., Shaw, R.J., Yates, J.R., III, Fischer, W.H., Thomas, J.B., Montminy, M. (2011). A hormone-dependent module regulating energy balance. Cell 145(4): p. 596-606.
30. Kleppe, R., Martinez, A., Doskeland, S.O., Haavik, J. (2011). The 14-3-3 proteins in regulation of cellular metabolism. Semin Cell Dev Biol 22(7): p. 713-719.
31. Itoh, Y., Sanosaka, M., Fuchino, H., Yahara, Y., Kumagai, A., Takemoto, D., Kagawa, M., Doi, J., Ohta, M., Tsumaki, N., Kawahara, N., Takemori, H. (2015). Salt-inducible kinase 3 signaling is important for the gluconeogenic programs in mouse hepatocytes. J Biol Chem 290(29): p. 17879-17893.
32. Patel, K., Foretz, M., Marion, A., Campbell, D.G., Gourlay, R., Boudaba, N., Tournier, E., Titchenell, P., Peggie, M., Deak, M., Wan, M., Kaestner, K.H., Goransson, O., Viollet, B., Gray, N.S., Birnbaum, M.J., Sutherland, C., Sakamoto, K. (2014). The LKB1-salt-inducible kinase pathway functions as a key gluconeogenic suppressor in the liver. Nat Commun 5: p. 4535.
33. Choi, S., Lim, D.S., Chung, J. (2015). Feeding and fasting signals converge on the LKB1-SIK3 pathway to regulate lipid metabolism in drosophila. PLoS Genet 11(5): p. e1005263.
34. Katoh, Y., Takemori, H., Horike, N., Doi, J., Muraoka, M., Min, L., Okamoto, M. (2004). Salt-inducible kinase (SIK) isoforms: their involvement in steroidogenesis and adipogenesis. Molecular and Cellular Endocrinology 217(1-2): p. 109-112.
35. Wang, Z., Takemori, H., Halder, S.K., Nonaka, Y., Okamoto, M. (1999). Cloning of a novel kinase (SIK) of the SNF1/AMPK family from high salt diet‐treated rat adrenal1. FEBS Letters 453(1-2): p. 135-139.
36. Bettencourt-Dias, M., Giet, R., Sinka, R., Mazumdar, A., Lock, W., Balloux, F., Zafiropoulos, P., Yamaguchi, S., Winter, S., Carthew, R. (2004). Genome-wide survey of protein kinases required for cell cycle progression. Nature 432(7020): p. 980.
37. Cheng, H., Liu, P., Wang, Z.C., Zou, L., Santiago, S., Garbitt, V., Gjoerup, O.V., Iglehart, J.D., Miron, A., Richardson, A.L. (2009). SIK1 couples LKB1 to p53-dependent anoikis and suppresses metastasis. Sci Signal 2(80): p. ra35-ra35.
38. Eneling, K., Brion, L., Pinto, V., Pinho, M.J., Sznajder, J.I., Mochizuki, N., Emoto, K., Soares-da-Silva, P., Bertorello, A.M. (2012). Salt-inducible kinase 1 regulates E-cadherin expression and intercellular junction stability. The FASEB Journal 26(8): p. 3230-3239.
39. Horike, N., Takemori, H., Katoh, Y., Doi, J., Min, L., Asano, T., Sun, X.J., Yamamoto, H., Kasayama, S., Muraoka, M. (2003). Adipose-specific expression, phosphorylation of Ser794 in insulin receptor substrate-1, and activation in diabetic animals of salt-inducible kinase-2. Journal of Biological Chemistry 278(20): p. 18440-18447.
40. Walkinshaw, D.R., Weist, R., Kim, G.W., You, L., Xiao, L., Nie, J., Li, C.S., Zhao, S., Xu, M., Yang, X.J. (2013). The tumor suppressor kinase LKB1 activates the downstream kinases SIK2 and SIK3 to stimulate nuclear export of class IIa histone deacetylases. J Biol Chem 288(13): p. 9345-9362.
41. Berggreen, C., Henriksson, E., Jones, H.A., Morrice, N., Goransson, O. (2012). cAMP-elevation mediated by beta-adrenergic stimulation inhibits salt-inducible kinase (SIK) 3 activity in adipocytes. Cell Signal 24(9): p. 1863-1871.
42. Teesalu, M., Rovenko, B.M., Hietakangas, V. (2017). Salt-inducible kinase 3 provides sugar tolerance by regulating NADPH/NADP(+) redox balance. Curr Biol 27(3): p. 458-464.
43. Uebi, T., Itoh, Y., Hatano, O., Kumagai, A., Sanosaka, M., Sasaki, T., Sasagawa, S., Doi, J., Tatsumi, K., Mitamura, K., Morii, E., Aozasa, K., Kawamura, T., Okumura, M., Nakae, J., Takikawa, H., Fukusato, T., Koura, M., Nish, M., Hamsten, A., Silveira, A., Bertorello, A.M., Kitagawa, K., Nagaoka, Y., Kawahara, H., Tomonaga, T., Naka, T., Ikegawa, S., Tsumaki, N., Matsuda, J., Takemori, H. (2012). Involvement of SIK3 in glucose and lipid homeostasis in mice. PLoS One 7(5): p. e37803.
44. Sasagawa, S., Takemori, H., Uebi, T., Ikegami, D., Hiramatsu, K., Ikegawa, S., Yoshikawa, H., Tsumaki, N. (2012). SIK3 is essential for chondrocyte hypertrophy during skeletal development in mice. Development: p. dev. 072652.
45. Charoenfuprasert, S., Yang, Y.Y., Lee, Y.C., Chao, K.C., Chu, P.Y., Lai, C.R., Hsu, K.F., Chang, K.C., Chen, Y.C., Chen, L.T., Chang, J.Y., Leu, S.J., Shih, N.Y. (2011). Identification of salt-inducible kinase 3 as a novel tumor antigen associated with tumorigenesis of ovarian cancer. Oncogene 30(33): p. 3570-3584.
46. Couch, F.J., Wang, X., Bamlet, W.R., De Andrade, M., Petersen, G.M., McWilliams, R.R. (2010). Association of mitotic regulation pathway polymorphisms with pancreatic cancer risk and outcome. Cancer Epidemiology and Prevention Biomarkers 19(1): p. 251-257.
47. Sonntag, T., Vaughan, J.M., Montminy, M. (2018). 14-3-3 proteins mediate inhibitory effects of cAMP on salt-inducible kinases (SIKs). FEBS J 285(3): p. 467-480.
48. Wang, A.H., Kruhlak, M.J., Wu, J., Bertos, N.R., Vezmar, M., Posner, B.I., Bazett-Jones, D.P., Yang, X.-J. (2000). Regulation of histone deacetylase 4 by binding of 14-3-3 proteins. Molecular and Cellular Biology 20(18): p. 6904-6912.
49. Screaton, R.A., Conkright, M.D., Katoh, Y., Best, J.L., Canettieri, G., Jeffries, S., Guzman, E., Niessen, S., Yates J.R., III, Takemori, H. (2004). The CREB coactivator TORC2 functions as a calcium-and cAMP-sensitive coincidence detector. Cell 119(1): p. 61-74.
50. Altarejos, J.Y., Montminy, M. (2011). CREB and the CRTC co-activators: sensors for hormonal and metabolic signals. Nature Reviews Molecular Cell Biology 12(3): p. 141.
51. Crunkhorn, S. (2011). Metabolic disease: new role for HDACs in glucose homeostasis. Nature Reviews Drug Discovery 10(7): p. 492.
52. Mihaylova, M.M., Vasquez, D.S., Ravnskjaer, K., Denechaud, P.D., Yu, R.T., Alvarez, J.G., Downes, M., Evans, R.M., Montminy, M., Shaw, R.J. (2011). Class IIa histone deacetylases are hormone-activated regulators of FOXO and mammalian glucose homeostasis. Cell 145(4): p. 607-621.
53. Tiainen, M., Vaahtomeri, K., Ylikorkala, A., Mäkelä, T.P. (2002). Growth arrest by the LKB1 tumor suppressor: induction of p21WAF1/CIP1. Human Molecular Genetics 11(13): p. 1497-1504.
54. Tiainen, M., Ylikorkala, A., Mäkelä, T.P. (1999). Growth suppression by Lkb1 is mediated by a G1 cell cycle arrest. Proceedings of the National Academy of Sciences 96(16): p. 9248-9251.
55. Chang, G.-C., Liu, K.-J., Hsieh, C.-L., Hu, T.-S., Charoenfuprasert, S., Liu, H.-K., Luh, K.-T., Hsu, L.-H., Wu, C.-W., Ting, C.-C. (2006). Identification of α-enolase as an autoantigen in lung cancer: its overexpression is associated with clinical outcomes. Clinical Cancer Research 12(19): p. 5746-5754.
56. Weng, C.C., Hawse, J.R., Subramaniam, M., Chang, V.H.S., Yu, W.C.Y., Hung, W.C., Chen, L.T., Cheng, K.H. (2017). KLF10 loss in the pancreas provokes activation of SDF-1 and induces distant metastases of pancreatic ductal adenocarcinoma in the Kras(G12D) p53(flox/flox) model. Oncogene 36(39): p. 5532-5543.
57. Anaya, J. (2016). OncoLnc: linking TCGA survival data to mRNAs, miRNAs, and lncRNAs. PeerJ Computer Science 2: p. e67.
58. Rajeshkumar, N., Yabuuchi, S., Pai, S., De Oliveira, E., Kamphorst, J.J., Rabinowitz, J.D., Tejero, H., Al-Shahrour, F., Hidalgo, M., Maitra, A. (2017). Treatment of pancreatic cancer patient-derived xenograft panel with metabolic inhibitors reveals efficacy of phenformin. Clinical Cancer Research: p. 1115.
59. Hassan, Z., Schneeweis, C., Wirth, M., Veltkamp, C., Dantes, Z., Feuerecker, B., Ceyhan, G.O., Knauer, S.K., Weichert, W., Schmid, R.M. (2018). MTOR inhibitor-based combination therapies for pancreatic cancer. British Journal of Cancer 118(3): p. 366.
60. Han, H.-S., Jung, C.-Y., Yoon, Y.-S., Choi, S., Choi, D., Kang, G., Park, K.-G., Kim, S.-T., Koo, S.-H. (2014). Arginine methylation of CRTC2 is critical in the transcriptional control of hepatic glucose metabolism. Sci Signal 7(314): p. ra19-ra19.
61. Nixon, M., Stewart-Fitzgibbon, R., Fu, J., Akhmedov, D., Rajendran, K., Mendoza-Rodriguez, M.G., Rivera-Molina, Y.A., Gibson, M., Berglund, E.D., Justice, N.J. (2016). Skeletal muscle salt inducible kinase 1 promotes insulin resistance in obesity. Molecular Metabolism 5(1): p. 34-46.
62. Park, J., Yoon, Y.-S., Han, H.-S., Kim, Y.-H., Ogawa, Y., Park, K.-G., Lee, C.-H., Kim, S.-T., Koo, S.-H. (2014). SIK2 is critical in the regulation of lipid homeostasis and adipogenesis in vivo. Diabetes: p. DB131423.
63. Shaw, R.J. (2009). Tumor suppression by LKB1: SIK-ness prevents metastasis. Science Signaling 2(86): p. e55.
64. Chen, J.-L., Chen, F., Zhang, T.-T., Liu, N.-F. (2016). Suppression of SIK1 by miR-141 in human ovarian cancer cell lines and tissues. International Journal of Molecular Medicine 37(6): p. 1601-1610.
65. Ren, Z.-G., Dong, S.-X., Han, P., Qi, J. (2016). miR-203 promotes proliferation, migration and invasion by degrading SIK1 in pancreatic cancer. Oncology Reports 35(3): p. 1365-1374.
66. Amin, N., Khan, A., Johnston, D.S., Tomlinson, I., Martin, S., Brenman, J., McNeill, H. (2009). LKB1 regulates polarity remodeling and adherens junction formation in the Drosophila eye. Proceedings of the National Academy of Sciences 106(22): p. 8941-8946.
67. Guarino, M. (2007). Epithelial-mesenchymal transition and tumour invasion. Int J Biochem Cell Biol 39(12): p. 2153-2160.
68. Miranda, F., Mannion, D., Liu, S., Zheng, Y., Mangala, L.S., Redondo, C., Herrero-Gonzalez, S., Xu, R., Taylor, C., Chedom, D.F. (2016). Salt-inducible kinase 2 couples ovarian cancer cell metabolism with survival at the adipocyte-rich metastatic niche. Cancer Cell 30(2): p. 273-289.
69. Ahmed, A.A., Lu, Z., Jennings, N.B., Etemadmoghadam, D., Capalbo, L., Jacamo, R.O., Barbosa-Morais, N., Le, X.-F., Vivas-Mejia, P., Lopez-Berestein, G. (2010). SIK2 is a centrosome kinase required for bipolar mitotic spindle formation that provides a potential target for therapy in ovarian cancer. Cancer Cell 18(2): p. 109-121.
70. Chen, H., Huang, S., Han, X., Zhang, J., Shan, C., Tsang, Y.H., Ma, H.T., Poon, R.Y.C. (2014). Salt-inducible kinase 3 is a novel mitotic regulator and a target for enhancing antimitotic therapeutic-mediated cell death. Cell Death & Disease 5(4): p. e1177.
71. Dominguez-Brauer, C., Thu, K.L., Mason, J.M., Blaser, H., Bray, M.R., Mak, T.W. (2015). Targeting mitosis in cancer: emerging strategies. Molecular Cell 60(4): p. 524-536.
72. Li, X., Deng, S., Liu, M., Jin, Y., Zhu, S., Deng, S., Chen, J., He, C., Qin, Q., Wang, C. (2018). The responsively decreased PKM2 facilitates the survival of pancreatic cancer cells in hypoglucose. Cell Death & Disease 9(2): p. 133.
73. Gao, W.W., Tang, H.V., Cheng, Y., Chan, C.P., Chan, C.P., Jin, D.Y. (2018). Suppression of gluconeogenic gene transcription by SIK1-induced ubiquitination and degradation of CRTC1. Biochim Biophys Acta 1861(3): p. 211-223.
74. Clark, K., MacKenzie, K.F., Petkevicius, K., Kristariyanto, Y., Zhang, J., Choi, H.G., Peggie, M., Plater, L., Pedrioli, P.G., McIver, E. (2012). Phosphorylation of CRTC3 by the salt-inducible kinases controls the interconversion of classically activated and regulatory macrophages. Proceedings of the National Academy of Sciences 109(42): p. 16986-16991.
75. Backs, J., Song, K., Bezprozvannaya, S., Chang, S., Olson, E.N. (2006). CaM kinase II selectively signals to histone deacetylase 4 during cardiomyocyte hypertrophy. The Journal of Clinical Investigation 116(7): p. 1853-1864.
76. Vega, R.B., Harrison, B.C., Meadows, E., Roberts, C.R., Papst, P.J., Olson, E.N., McKinsey, T.A. (2004). Protein kinases C and D mediate agonist-dependent cardiac hypertrophy through nuclear export of histone deacetylase 5. Molecular and Cellular Biology 24(19): p. 8374-8385.
77. Parra, M. (2015). Class IIa HDACs–new insights into their functions in physiology and pathology. The FEBS Journal 282(9): p. 1736-1744.
78. Fischle, W., Dequiedt, F., Hendzel, M.J., Guenther, M.G., Lazar, M.A., Voelter, W., Verdin, E. (2002). Enzymatic activity associated with class II HDACs is dependent on a multiprotein complex containing HDAC3 and SMRT/N-CoR. Molecular Cell 9(1): p. 45-57.
79. Ramadani, M., Gansauge, F., Salama-Mueller, A., Gansauge, S., Leder, G. (2001). Expression of facilitative glucose transporters in pancreatic cancer. Prognostic relevance of Glut4. Gastroenterology 120(5): p. A161.
80. Calvo, M.B., Figueroa, A., Pulido, E.G., Campelo, R.G., Aparicio, L.A. (2010). Potential role of sugar transporters in cancer and their relationship with anticancer therapy. International Journal of Endocrinology.
81. Cao, H., van der Veer, E., Ban, M.R., Hanley, A.J., Zinman, B., Harris, S.B., Young, T.K., Pickering, J.G., Hegele, R.A. (2004). Promoter polymorphism in PCK1 (phosphoenolpyruvate carboxykinase gene) associated with type 2 diabetes mellitus. The Journal of Clinical Endocrinology & Metabolism 89(2): p. 898-903.
82. Ghanaat-Pour, H., Huang, Z., Lehtihet, M., Sjöholm, Å. (2007). Global expression profiling of glucose-regulated genes in pancreatic islets of spontaneously diabetic Goto-Kakizaki rats. Journal of Molecular Endocrinology 39(2): p. 135-150.
83. Plummer, S.M., Farrar, D.G., Elcombe, C.R. (2007). Comparison of gene expression changes in whole pancreas with isolated pancreatic acinar cells of rats fed diets containing Wyeth 14,643 or ammonium perfluorooctanoate. Toxicology 3(240): p. 161.
84. Schneider, G., Krämer, O.H., Fritsche, P., Schüler, S., Schmid, R.M., Saur, D. (2010). Targeting histone deacetylases in pancreatic ductal adenocarcinoma. Journal of Cellular and Molecular Medicine 14(6a): p. 1255-1263.
85. Peulen, O., Gonzalez, A., Peixoto, P., Turtoi, A., Mottet, D., Delvenne, P., Castronovo, V. (2013). The anti-tumor effect of HDAC inhibition in a human pancreas cancer model is significantly improved by the simultaneous inhibition of cyclooxygenase 2. PloS One 8(9): p. e75102.
86. Klieser, E., Swierczynski, S., Mayr, C., Schmidt, J., Neureiter, D., Kiesslich, T., Illig, R. (2015). Role of histone deacetylases in pancreas: Implications for pathogenesis and therapy. World Journal of Gastrointestinal Oncology 7(12): p. 473.
87. Hendrick, E., Peixoto, P., Blomme, A., Polese, C., Matheus, N., Cimino, J., Frère, A., Mouithys-Mickalad, A., Serteyn, D., Bettendorff, L. (2017). Metabolic inhibitors accentuate the anti-tumoral effect of HDAC5 inhibition. Oncogene 36(34): p. 4859.
88. Hsieh, T.-H., Hsu, C.-Y., Tsai, C.-F., Long, C.-Y., Wu, C.-H., Wu, D.-C., Lee, J.-N., Chang, W.-C., Tsai, E.-M. (2015). HDAC inhibitors target HDAC5, upregulate microRNA-125a-5p, and induce apoptosis in breast cancer cells. Molecular Therapy 23(4): p. 656-666.
89. Wang, X., Wei, X., Pang, Q., Yi, F. (2012). Histone deacetylases and their inhibitors: molecular mechanisms and therapeutic implications in diabetes mellitus. Acta Pharmaceutica Sinica B 2(4): p. 387-395.