簡易檢索 / 詳目顯示

研究生: 柯柏隆
Ke, Bo-Long
論文名稱: 淡水蝦於水生植物棲息地利用與環境因子之關係
Aquatic Vegetation Habitat Utilization by Freshwater Shrimp Related to Environmental Factors
指導教授: 孫建平
Suen, Jian-Ping
學位類別: 碩士
Master
系所名稱: 工學院 - 水利及海洋工程學系
Department of Hydraulic & Ocean Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 82
中文關鍵詞: 淡水蝦水生植物環境因子河川復育伏流水五溝水
外文關鍵詞: Freshwater Shrimp, Aquatic Plants, Environmental Factors, River Restoration, Hyporheic Water, Wu-Gon-Shui River
相關次數: 點閱:130下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 臺灣河川復育工程重點仍在排水設計與塑造景觀,河道底床多以採用拋石方式,這些工程缺乏對原生生物需求考量,一些水生生物需要不同底質形式或水生植物才能在河川中建立群落。水生植物對於河川生態是一個重要的因子,會直接影響水生生態系統,除了提供食物來源外,水生植物也具備躲避天敵、提供生殖場所的功能。在河川復育工程中塑造水生植物棲地有助於一些水生生物的生存。然而過去的研究鮮少探討水生植物與依賴水生植物作為棲息地的生物之間的關係。如淡水蝦常發現於水生植物叢或遮蔽物內。在臺灣,淡水蝦面臨棲地汙染、棲地破壞與外來種入侵的問題,這使得這些物種生存受到威脅。然而,目前淡水蝦對於水生植物的需求了解甚少。本研究以屏東縣萬巒鄉五溝水為例,探討淡水蝦於水生植物棲息地的需求,並探討環境因子與水生植物關係以提供未來河川復育工程的參考。
    本研究發現擬多齒米蝦對於相對酸性的水質與原生水生植物有明顯偏好,這些原生水生植物偏好生長於細顆粒底質的淺水區,粒徑較大的底質多被外來種水生植物所佔據,多齒新米蝦偏好相對鹼性的水質、低流速區域。一些枝葉結構簡單的水生植物可以做為較大型的淡水蝦作為棲息地,枝葉繁密的水生植物有助於塑造低流速環境,並且有利於小型個體的淡水蝦生存。本研究認為: 1. 河川復育工程應規劃部分細底質的區域來建立原生水生植物群落,有助於淡水蝦於河川中建立族群,特別是有利於擬多齒米蝦。2. 應該制定對於河道管理的長期規劃,才有助於生態與民生安全之間的平衡。

    In Taiwan, river restoration engineering focuses on flood control and landscape works. These riverbeds are constructed by riprap. However, different aquatic organisms require different substrate forms or aquatic plants to establish communities in rivers. Aquatic plants are important factors in river ecology. They directly affect the aquatic ecosystem. Besides providing food, aquatic plants also provide sites for reproduction and escaping from the threats of natural enemies. However, past research in Taiwan had rarely explored the relationship between aquatic plants and organisms, such as freshwater shrimp being frequently found in aquatic vegetation or under shelter. In Taiwan, freshwater shrimp are threatened by water pollution, hydraulic engineering, and exotic species, which endanger the survival of these species. However, the requirements of freshwater shrimp for aquatic plants are poorly understood. In this study, we investigated the requirements of freshwater shrimp for aquatic vegetation habitat and explored the relationship between environmental factors and aquatic plants at Wu-Gon-Shui River in Pingtung County in order to provide a reference for river restoration projects.

    摘要 I Extended Abstract II 謝誌 VIII 目錄 IX 表目錄 XI 圖目錄 XII 第1章 前言 1 第2章 文獻回顧 3 2.1 伏流水對河川生態影響 3 2.2 水生植物與水域生態系關係 5 2.3 淡水蝦類 10 2.4 河川的生態復育 11 第3章 研究方法 13 3.1 研究區域 13 3.2 採樣時間 16 3.3 棲地物理環境調查 16 3.4 棲地水質調查 20 3.5 蝦類採集調查 21 3.6 統計方法 23 3.6.1 有母數與無母數統計 23 3.6.2 三個採樣區域環境變量比較 24 3.6.3 擬多齒米蝦出現與未出現環境差異 25 3.6.4 淡水蝦於不同採樣區域體長差異 26 3.6.5 排序分析 26 3.6.6 典型相關分析(canonical correlation analysis, CCorA) 29 3.6.7 R語言的使用 30 第4章 結果與討論 32 4.1 淡水蝦採樣結果 32 4.2 水生植物採樣結果 39 4.3 採樣區域地表水與伏流水水質與水文因子差異 43 4.4 蝦與環境變量關係 49 4.5 植物變量與環境變量關係 57 第5章 結論與建議 61 第6章 參考文獻 64 第7章 附錄 79

    Ahad, N. A., Yin, T. S., Othman, A. R., & Yaacob, C. R. Sensitivity of normality tests to non-normal data. Sains Malaysiana, 40(6), 637-641. (2011).
    Amyot, J. P., & Downing, J. Seasonal variation in vertical and horizontal movement of the freshwater bivalve Elliptio complanata (Mollusca: Unionidae). Freshwater Biology, 37(2), 345-354. (1997).
    Anderson, A. Ordination methods in ecology. The Journal of Ecology, 713-726. (1971).
    Araújo, M. S., Castiglioni, D. S., & Coelho, P. A. Width-weight relationship and condition factor of Ucides cordatus (Crustacea, Decapoda, Ucididae) at tropical mangroves of Northeast Brazil. Iheringia. Série Zoologia, 102(3), 277-284. (2012).
    Arts, G., Van der Velde, G., Roelofs, J., & Van Swaay, C. Successional changes in the soft‐water macrophyte vegetation of (sub) atlantic, sandy, lowland regions during this century. Freshwater Biology, 24(2), 287-294. (1990).
    Bal, K. D., Bouma, T. J., Buis, K., Struyf, E., Jonas, S., Backx, H., et al. Trade‐off between drag reduction and light interception of macrophytes: comparing five aquatic plants with contrasting morphology. Functional Ecology, 25(6), 1197-1205. (2011).
    Barker, T., Hatton, K., O'Connor, M., Connor, L., & Moss, B. Effects of nitrate load on submerged plant biomass and species richness: results of a mesocosm experiment. Fundamental and Applied Limnology, 173(2), 89. (2008).
    Barrat-Segretain, M.-H. Germination and colonisation dynamics of Nuphar lutea (L.) Sm. in a former river channel. Aquatic Botany, 55(1), 31-38. (1996).
    Baumgartner, L. Diet and feeding habits of predatory fishes upstream and downstream of a low‐level weir. Journal of Fish Biology, 70(3), 879-894. (2007).
    Baxter, C., Hauer, F. R., & Woessner, W. W. Measuring groundwater–stream water exchange: new techniques for installing minipiezometers and estimating hydraulic conductivity. Transactions of the American Fisheries Society, 132(3), 493-502. (2003).
    Baxter, C. V., & Hauer, F. R. Geomorphology, hyporheic exchange, and selection of spawning habitat by bull trout (Salvelinus confluentus). Canadian Journal of Fisheries and Aquatic Sciences, 57(7), 1470-1481. (2000).
    Bencala, K. E. Interactions of solutes and streambed sediment: 2. A dynamic analysis of coupled hydrologic and chemical processes that determine solute transport. Water Resources Research, 20(12), 1804-1814. (1984).
    Bernhardt, E. S., & Palmer, M. A. Restoring streams in an urbanizing world. Freshwater biology, 52(4), 738-751. (2007).
    Biggs, B. J. Hydraulic habitat of plants in streams. Regulated Rivers: research & management, 12(2‐3), 131-144. (1996).
    Boano, F., Harvey, J. W., Marion, A., Packman, A. I., Revelli, R., Ridolfi, L., et al. Hyporheic flow and transport processes: Mechanisms, models, and biogeochemical implications. Reviews of Geophysics, 52(4), 603-679. (2014).
    Bogan, A. E. Freshwater bivalve extinctions (Mollusca: Unionoida): a search for causes. American Zoologist, 33(6), 599-609. (1993).
    Borcard, D., Gillet, F., & Legendre, P. Numerical ecology with R (Vol. 2): Springer. (2011).
    Boulton, A., & Hancock, P. Rivers as groundwater-dependent ecosystems: a review of degrees of dependency, riverine processes and management implications. australian Journal of Botany, 54(2), 133-144. (2006).
    Bovee, K. D., Milhous, R. T., & Turow, J. Hydraulic simulation in instream flow studies: theory and techniques: Department of the Interior, Fish and Wildlife Service, Office of Biological …. (1978).
    Boylen, C. W., Eichler, L. W., & Madsen, J. D. Loss of native aquatic plant species in a community dominated by Eurasian watermilfoil. Hydrobiologia, 415, 207-211. (1999).
    Caraco, N., Cole, J., Findlay, S., & Wigand, C. Vascular plants as engineers of oxygen in aquatic systems. BioScience, 56(3), 219-225. (2006).
    Caraco, N. F., & Cole, J. J. Contrasting impacts of a native and alien macrophyte on dissolved oxygen in a large river. Ecological Applications, 12(5), 1496-1509. (2002).
    Cardenas, M. B., Ford, A. E., Kaufman, M. H., Kessler, A. J., & Cook, P. L. Hyporheic flow and dissolved oxygen distribution in fish nests: The effects of open channel velocity, permeability patterns, and groundwater upwelling. Journal of Geophysical Research: Biogeosciences, 121(12), 3113-3130. (2016).
    Casartelli, M. R., & Ferragut, C. The effects of habitat complexity on periphyton biomass accumulation and taxonomic structure during colonization. Hydrobiologia, 807(1), 233-246. (2018).
    Clarke, E., & Baldwin, A. H. Responses of wetland plants to ammonia and water level. Ecological Engineering, 18(3), 257-264. (2002).
    Colzi, I., Lastrucci, L., Rangoni, M., Coppi, A., & Gonnelli, C. Using Myriophyllum aquaticum (Vell.) Verdc. to remove heavy metals from contaminated water: Better dead or alive? Journal of environmental management, 213, 320-328. (2018).
    Crowl, T. A., McDowell, W. H., Covich, A. P., & Johnson, S. L. Freshwater shrimp effects on detrital processing and nutrients in a tropical headwater stream. Ecology, 82(3), 775-783. (2001).
    De los Santos-Romero, R. B., García-Guerrero, M. U., Alpuche-Osorno, J. J., & Cortes-Jacinto, E. The effect of alpha males and shelter type on growth and survival of the longarm prawn Macrobrachium tenellum (Smith, 1871). Latin American Journal of Aquatic Research, 46(3), 551-557. (2018).
    Feldman, R. S. Taxonomic and size structures of phytophilous macroinvertebrate communities in Vallisneria and Trapa beds of the Hudson River, New York. Hydrobiologia, 452(1), 233-245. (2001).
    Fortner, S. L., & White, D. S. Interstitial water patterns: a factor influencing the distributions of some lotic aquatic vascular macrophytes. Aquatic Botany, 31(1-2), 1-12. (1988).
    Gandy, C., Smith, J., & Jarvis, A. Attenuation of mining-derived pollutants in the hyporheic zone: a review. Science of the Total Environment, 373(2-3), 435-446. (2007).
    García, C., García, J., López Martín, M., & Salmerón, R. Collinearity: revisiting the variance inflation factor in ridge regression. Journal of Applied Statistics, 42(3), 648-661. (2015).
    Grimm, N. B., & Fisher, S. G. Exchange between interstitial and surface water: implications for stream metabolism and nutrient cycling. Hydrobiologia, 111(3), 219-228. (1984).
    Gross, E. M., Johnson, R. L., & Hairston Jr, N. G. Experimental evidence for changes in submersed macrophyte species composition caused by the herbivore Acentria ephemerella (Lepidoptera). Oecologia, 127(1), 105-114. (2001).
    Handley, R. J., & Davy, A. J. Seedling root establishment may limit Najas marina L. to sediments of low cohesive strength. Aquatic Botany, 73(2), 129-136. (2002).
    Harguinteguy, C. A., Pignata, M. L., & Fernández-Cirelli, A. Nickel, lead and zinc accumulation and performance in relation to their use in phytoremediation of macrophytes Myriophyllum aquaticum and Egeria densa. Ecological engineering, 82, 512-516. (2015).
    Hartnoll, R. Reproductive investment in Brachyura. Hydrobiologia, 557(1), 31-40. (2006).
    Hedin, L. O., Von Fischer, J. C., Ostrom, N. E., Kennedy, B. P., Brown, M. G., & Robertson, G. P. Thermodynamic constraints on nitrogentransformations and other biogeochemicalprocesses at soil–stream interfaces. Ecology, 79(2), 684-703. (1998).
    Huang, X., Shen, N., Guan, X., Xu, X., Kong, F., Liu, C., et al. Root morphological and structural comparisons of introduced and native aquatic plant species in multiple substrates. Aquatic ecology, 52(1), 65-76. (2018).
    Huebert, D. B., & Gorham, P. R. Biphasic mineral nutrition of the submersed aquatic macrophyte Potamogeton pectinatus L. Aquatic Botany, 16(3), 269-284. (1983).
    Huston, M., & Smith, T. Plant succession: life history and competition. The American Naturalist, 130(2), 168-198. (1987).
    James, C., Fisher, J., Russell, V., Collings, S., & Moss, B. Nitrate availability and hydrophyte species richness in shallow lakes. Freshwater biology, 50(6), 1049-1063. (2005).
    James, W. F., Barko, J. W., & Eakin, H. L. Impacts of sediment dewatering and rehydration on sediment nitrogen concentration and macrophyte growth. Canadian Journal of Fisheries and Aquatic Sciences, 61(4), 538-546. (2004).
    Jampeetong, A., & Brix, H. Effects of NH4+ concentration on growth, morphology and NH4+ uptake kinetics of Salvinia natans. Ecological Engineering, 35(5), 695-702. (2009).
    Johansson, M., & Nilsson, C. Responses of riparian plants to flooding in free‐flowing and regulated boreal rivers: an experimental study. Journal of Applied Ecology, 39(6), 971-986. (2002).
    Kemp, W. M., Boynton, W. R., Twilley, R. R., Stevenson, J. C., & Ward, L. G. Influences of submersed vascular plants on ecological processes in upper Chesapeake Bay The estuary as a filter (pp. 367-394): Elsevier. (1984)
    Kim, J. H. Multicollinearity and misleading statistical results. Korean journal of anesthesiology, 72(6), 558. (2019).
    Kondolf, G., Smeltzer, M. W., & Railsback, S. F. Design and performance of a channel reconstruction project in a coastal California gravel-bed stream. Environmental Management, 28(6), 761-776. (2001).
    Kondolf, G. M. Lessons learned from river restoration projects in California. Aquatic Conservation: marine and freshwater ecosystems, 8(1), 39-52. (1998).
    Kounthongbang, Souliyamath, A., Chanthasone, P., Okutsu, P. P. P. L. O., Ito, T., & Sayaka. Daytime habitat use and abundance of a freshwater shrimp Macrobrachium yui Holthuis, 1950 (Decapoda: Palaemonidae) in tropical forest stream, northern Laos. Crustacean Research, 50, 151-163. (2021).
    Lee, P. G., Rodrick, G. E., Sodeman Jr, W. A., & Blake, N. J. The giant Malaysian prawn, Macrobrachium rosenbergii, a potental predator for controlling the spread of schistosome vector snails in fish ponds. Aquaculture, 28(3-4), 293-301. (1982).
    Legendre, P., & Gallagher, E. D. Ecologically meaningful transformations for ordination of species data. Oecologia, 129(2), 271-280. (2001).
    Lenssen, J. P., Menting, F. B., van der Putten, W. H., & Blom, C. W. Effects of sediment type and water level on biomass production of wetland plant species. Aquatic Botany, 64(2), 151-165. (1999).
    Lepš, J., & Šmilauer, P. Multivariate analysis of ecological data using CANOCO: Cambridge university press. (2003).
    Lira, J. J., Calado, T., & Araújo, M. S. Condition factor of Goniopsis cruentata (Crustacea, Brachyura, Grapsidae) from Mundaú/Manguaba estuarine complex, Alagoas, Brazil. Iheringia. Série Zoologia, 102, 285-291. (2012).
    Litav, M., & Lehrer, Y. The effects of ammonium in water on Potamogeton lucens. Aquatic Botany, 5, 127-138. (1978).
    Madsen, J. D., Chambers, P. A., James, W. F., Koch, E. W., & Westlake, D. F. The interaction between water movement, sediment dynamics and submersed macrophytes. Hydrobiologia, 444(1), 71-84. (2001).
    Mariappan, P., & Balasundaram, C. Effect of shelters, densities, and weight groups on survival, growth and limb loss in the freshwater prawn, Macrobrachium nobilii (Henderson and Matthai, 1910). Journal of Applied Aquaculture, 15(3-4), 51-62. (2004).
    Marion, L., & Paillisson, J.-M. A mass balance assessment of the contribution of floating-leaved macrophytes in nutrient stocks in an eutrophic macrophyte-dominated lake. Aquatic Botany, 75(3), 249-260. (2003).
    Miller, A., & Cramer, M. Root nitrogen acquisition and assimilation. Plant and soil, 274(1), 1-36. (2005).
    Moerke, A. H., Gerard, K. J., Latimore, J. A., Hellenthal, R. A., & Lamberti, G. A. Restoration of an Indiana, USA, stream: bridging the gap between basic and applied lotic ecology. Journal of the North American Benthological Society, 23(3), 647-660. (2004).
    Nogaro, G., Datry, T., Mermillod‐Blondin, F., Foulquier, A., & Montuelle, B. Influence of hyporheic zone characteristics on the structure and activity of microbial assemblages. Freshwater Biology, 58(12), 2567-2583. (2013).
    Økland, R. H. Are ordination and constrained ordination alternative or complementary strategies in general ecological studies? Journal of Vegetation Science, 7(2), 289-292. (1996).
    Orghidan, T. A new habitat of the underground water, the hyporheic biotope. Arch. Hydrobiol, 55, 392-414. (1959).
    Palmer, M. A., Bernhardt, E., Allan, J., Lake, P. S., Alexander, G., Brooks, S., et al. Standards for ecologically successful river restoration. Journal of applied ecology, 42(2), 208-217. (2005).
    Petticrew, E. L., & Kalff, J. Water flow and clay retention in submerged macrophyte beds. Canadian Journal of Fisheries and Aquatic Sciences, 49(12), 2483-2489. (1992).
    Pinheiro, M. A., & Taddei, F. G. Relação peso/largura da carapaça e fator de condição em Dilocarcinus pagei Stimpson (Crustacea, Trichodactylidae), em São José do Rio Preto, São Paulo, Brasil. Revista brasileira de Zoologia, 22, 825-829. (2005).
    Platts, W. S., Megahan, W. F., & Minshall, G. W. Methods for evaluating stream, riparian, and biotic conditions (Vol. 138): US Department of Agriculture, Forest Service, Intermountain Forest and Range …. (1982).
    Pringle, C. M., Blake, G. A., Covich, A. P., Buzby, K. M., & Finley, A. Effects of omnivorous shrimp in a montane tropical stream: sediment removal, disturbance of sessile invertebrates and enhancement of understory algal biomass. Oecologia, 93(1), 1-11. (1993).
    Puijalon, S., Bornette, G., & Sagnes, P. Adaptations to increasing hydraulic stress: morphology, hydrodynamics and fitness of two higher aquatic plant species. Journal of Experimental Botany, 56(412), 777-786. (2005).
    Rascio, N. The underwater life of secondarily aquatic plants: some problems and solutions. Critical Reviews in Plant Sciences, 21(4), 401-427. (2002).
    Razali, N. M., & Wah, Y. B. Power comparisons of shapiro-wilk, kolmogorov-smirnov, lilliefors and anderson-darling tests. Journal of statistical modeling and analytics, 2(1), 21-33. (2011).
    Reynolds Jr, S. K., & Benke, A. C. Chironomid production along a hyporheic gradient in contrasting stream types. Freshwater Science, 31(1), 167-181. (2012).
    Saito, M., Yamashiro, T., Hamano, T., & Nakata, K. Factors affecting distribution of freshwater shrimps and prawns in the Hiwasa River, southern central Japan. Crustacean research, 41, 27-46. (2012).
    Silva, J. N., Oliveira, G. d., & Rocha, S. S. d. Microhabitat preferences of the freshwater prawn Macrobrachium jelskii (Decapoda: Palaemonidae). Iheringia. Série Zoologia, 109. (2019).
    Smith, C. S., & Adams, M. S. Phosphorus transfer from sediments by Myriophyllum spicatum 1. Limnology and Oceanography, 31(6), 1312-1321. (1986).
    Smolders, A. J., Lucassen, E., & Roelofs, J. G. The isoetid environment: biogeochemistry and threats. Aquatic Botany, 73(4), 325-350. (2002).
    Souza, F. A., Dziedzic, M., Cubas, S. A., & Maranho, L. T. Restoration of polluted waters by phytoremediation using Myriophyllum aquaticum (Vell.) Verdc., Haloragaceae. Journal of environmental management, 120, 5-9. (2013).
    Stanford, J. A., & Ward, J. An ecosystem perspective of alluvial rivers: connectivity and the hyporheic corridor. Journal of the North American Benthological Society, 12(1), 48-60. (1993).
    Statzner, B., Gore, J. A., & Resh, V. H. Hydraulic stream ecology: observed patterns and potential applications. Journal of the North American benthological society, 7(4), 307-360. (1988).
    Stoddard, J. L., Larsen, D. P., Hawkins, C. P., Johnson, R. K., & Norris, R. H. Setting expectations for the ecological condition of streams: the concept of reference condition. Ecological applications, 16(4), 1267-1276. (2006).
    Storey, R. G., Howard, K. W., & Williams, D. D. Factors controlling riffle‐scale hyporheic exchange flows and their seasonal changes in a gaining stream: A three‐dimensional groundwater flow model. Water Resources Research, 39(2). (2003).
    Strayer, D. L., Lutz, C., Malcom, H. M., Munger, K., & Shaw, W. H. Invertebrate communities associated with a native (Vallisneria americana) and an alien (Trapa natans) macrophyte in a large river. Freshwater Biology, 48(11), 1938-1949. (2003).
    Sun, H., Liu, F., Xu, S., Wu, S., Zhuang, G., Deng, Y., et al. Myriophyllum aquaticum constructed wetland effectively removes nitrogen in swine wastewater. Frontiers in microbiology, 8, 1932. (2017).
    Susilo, V., Fadillah, N., Narulita, E., & Wowor, D. Diversity of freshwater shrimp (decapoda) from bandealit rivers meru betiri national park, East Java, Indonesia. Paper presented at the Journal of Physics: Conference Series. (2020).
    Szmeja, J., & Bazydlo, E. The effect of water conditions on the phenology and age structure of Luronium natans [L.] Raf. populations. Acta Societatis Botanicorum Poloniae, 74(3). (2005).
    Tamura, R., Kobayashi, K., Takano, Y., Miyashiro, R., Nakata, K., & Matsui, T. Mixed integer quadratic optimization formulations for eliminating multicollinearity based on variance inflation factor. Journal of Global Optimization, 73(2), 431-446. (2019).
    Tanner, C. C. Plants for constructed wetland treatment systems—a comparison of the growth and nutrient uptake of eight emergent species. Ecological engineering, 7(1), 59-83. (1996).
    Theel, H. J., Dibble, E. D., & Madsen, J. D. Differential influence of a monotypic and diverse native aquatic plant bed on a macroinvertebrate assemblage; an experimental implication of exotic plant induced habitat. Hydrobiologia, 600(1), 77-87. (2008).
    Thorp, A. G., Jones, R. C., & Kelso, D. P. A comparison of water-column macroinvertebrate communities in beds of differing submersed aquatic vegetation in the tidal freshwater Potomac River. Estuaries, 20(1), 86-95. (1997).
    Toft, J. D., Simenstad, C. A., Cordell, J. R., & Grimaldo, L. F. The effects of introduced water hyacinth on habitat structure, invertebrate assemblages, and fish diets. Estuaries, 26(3), 746-758. (2003).
    Triska, F. J., Kennedy, V. C., Avanzino, R. J., Zellweger, G. W., & Bencala, K. E. Retention and transport of nutrients in a third‐order stream in northwestern California: Hyporheic processes. Ecology, 70(6), 1893-1905. (1989).
    Vadher, A. N., Leigh, C., Millett, J., Stubbington, R., & Wood, P. J. Vertical movements through subsurface stream sediments by benthic macroinvertebrates during experimental drying are influenced by sediment characteristics and species traits. Freshwater Biology, 62(10), 1730-1740. (2017).
    Valinoti, C. E., Ho, C.-K., & Armitage, A. R. Native and exotic submerged aquatic vegetation provide different nutritional and refuge values for macroinvertebrates. Journal of Experimental Marine Biology and Ecology, 409(1-2), 42-47. (2011).
    Vander Vorste, R., Malard, F., & Datry, T. Is drift the primary process promoting the resilience of river invertebrate communities? A manipulative field experiment in an intermittent alluvial river. Freshwater Biology, 61(8), 1276-1292. (2016).
    Wallis, P., Hynes, H., & Telang, S. The importance of groundwater in the transportation of allochthonous dissolved organic matter to the streams draining a small mountain basin. Hydrobiologia, 79(1), 77-90. (1981).
    Wang, J., Liu, X., & Lu, J. Urban river pollution control and remediation. Procedia Environmental Sciences, 13, 1856-1862. (2012).
    Wang, L., & He, Z. Enhanced nitrogen removal and quantitative molecular mechanisms in a pilot-scale multistage constructed wetlands planted with Myriophyllum aquaticum treating lagoon swine wastewater. Ecological Engineering, 174, 106433. (2022).
    Warfe, D. M., & Barmuta, L. A. Habitat structural complexity mediates food web dynamics in a freshwater macrophyte community. Oecologia, 150(1), 141-154. (2006).
    Wetzel, R. G. Limnology: lake and river ecosystems: gulf professional publishing. (2001).
    Wigand, C., Stevenson, J. C., & Cornwell, J. C. Effects of different submersed macrophytes on sediment biogeochemistry. Aquatic Botany, 56(3-4), 233-244. (1997).
    Winter, T., Harvey, J., Franke, O., & Alley, W. Natural processes of ground-water and surface-water interaction. Ground Water and Surface Water: A Single Resource, US Geological Survey Circular, 1139, 2-50. (1998).
    Wyatt, K. H., Hauer, F. R., & Pessoney, G. F. Benthic algal response to hyporheic-surface water exchange in an alluvial river. Hydrobiologia, 607(1), 151-161. (2008).
    Xiao, J., Wang, H., Chu, S., & Wong, M.-H. Dynamic remediation test of polluted river water by Eco-tank system. Environmental technology, 34(4), 553-558. (2013).
    Zampella, R. A., Procopio, N. A., Lathrop, R. G., & Dow, C. L. Relationship of Land‐Use/Land‐Cover Patterns and Surface‐Water Quality in The Mullica River Basin 1. JAWRA Journal of the American Water Resources Association, 43(3), 594-604. (2007).
    內政部營建署城鄉發展分署,五溝濕地棲地營造及保育計畫。取自 https://wetland-tw.tcd.gov.tw/tw/Ecology.php?keyword=&t=1568779650&pn=20&pf=2。(2016)。
    吳輝龍,水生植物手冊。取自https://learning.swcb.gov.tw/library-new.asp?species=%E6%B0%B4%E4%BF%9D%E6%89%8B%E5%86%8A。(2007)。
    呂映昇,物理環境因子與魚類棲地喜好度之關係—多變量分析之應用。國立成功大學水利及海洋工程學系碩博士班碩士論文,台南市(2009)。取自 https://hdl.handle.net/11296/7mbb26。
    李菑宸,鹽水溪支流蝦類之棲地需求(2020)。
    林務局與中研院數位文化中心,臺灣生命大百科。https://taieol.tw/。(2011)。
    林馳源,伏流水對地表逕流水質與魚類影響之研究。國立成功大學水利及海洋工程學系碩士論文,台南市(2013)。取自 https://hdl.handle.net/11296/w4f9g6。
    邱冠智,人工濕地抗污染水生植物選用原則—以麟洛人工濕地為例(2009)。
    施志昀及游祥平,臺灣的淡水蝦:國立海洋生物博物館籌備處(1998)。
    柯宗佑,底棲型鰕虎對天然及人造產卵點之選擇。國立成功大學水利及海洋工程學系碩士論文,台南市(2016)。取自 https://hdl.handle.net/11296/2s9659。
    郭俊廷,伏流水與環境因子對底棲型鰕虎產卵之影響-以五溝水湧泉濕地為例。國立成功大學水利及海洋工程學系碩士論文,台南市(2015)。取自 https://hdl.handle.net/11296/h539gz。
    陳妙嫻,哈盆溪多齒新米蝦 (Neocaridina denticulata) 棲地利用之研究(2006)。
    游志弘,地表逕流與伏流水交換對水質特性相關性之探討。國立成功大學水利及海洋工程學系碩士論文,台南市(2014)。取自 https://hdl.handle.net/11296/jgn67t。
    黃嵩博,底棲型鰕虎對人造棲地空間之產卵選擇。國立成功大學水利及海洋工程學系碩士論文,台南市(2018)。取自 https://hdl.handle.net/11296/3qga5u。
    楊遠波、顏聖紘及林仲剛,臺灣水生植物圖誌。台北:行政院農業委員會 (2001)。
    葉柏緯,伏流水對魚類棲地之影響─以五溝水湧泉濕地為例。國立成功大學水利及海洋工程學系碩士論文,台南市(2014)。取自 https://hdl.handle.net/11296/24e24e。
    鄭羽淳,伏流水對於附著藻豐富度之研究。國立成功大學水利及海洋工程學系碩士論文,台南市(2020)。取自 https://hdl.handle.net/11296/w5x856。
    謝寶森、邱郁文、梁世雄及黃大駿,全國湧泉濕地生態資源調查(2013)。

    下載圖示 校內:2024-06-20公開
    校外:2024-06-20公開
    QR CODE