| 研究生: |
黃建中 Huang, Chien-Chung |
|---|---|
| 論文名稱: |
探討黏層於瀝青混凝土界面之力學性質 Mechanical Properties of Tack Coat on Asphalt Concrete Interfaces |
| 指導教授: |
陳建旭
CHEN, JIAN-SHIUH |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 123 |
| 中文關鍵詞: | 破乳時間 、黏層 、界面剪力強度 、界面黏結力 |
| 外文關鍵詞: | cohesion, shear strength, tack coat, breaking time |
| 相關次數: | 點閱:144 下載:9 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
國內道路新建工程已逐年減少,使得現有道路系統之鋪面維修問題已成為道路維修單位最重要的課題,黏層材料一般使用於瀝青混凝土鋪面新工或養護工程中,應用乳化或油溶瀝青來加強已鋪築面層與加鋪層之間的黏結,使得鋪面成為一個整體的系統來抵抗交通與環境載重,不足的黏結會導致舖面層的滑動或完全的分離,並產生大量的裂縫、剝離與坑洞,因而損害鋪面結構的功能。台灣目前在相關的黏層施工規範中,對於經常使用的黏層材料皆未建議最佳的噴灑量與養護時間,尤其未詳細定義黏層材料之破乳時間(Breaking Time),對於不同加鋪層類型亦沒有建議或限制使用何種類型之黏層材料,因此探討黏層材料的類型、噴灑量、養護時間與溫度對不同類型鋪面之界面剪力強度的影響是有其必要性。
本研究選擇CRS-1、橡膠乳化瀝青作為黏層材料,利用岩力試驗之直接剪力試驗儀來探討黏層噴灑量(0、0.1、0.2、0.3、0.5、1.0、1.5 L/m2)、黏層養護時間(0、0.33、0.75、2.0 hr)、級配類型(IVc、PA與SMA級配)、黏層試體養護時間(1、14、28 天)、試驗溫度(25、50℃)與四種正向力(138、276、414、552 kPa)對瀝青混凝土界面剪力強度之影響,同時量測鋪面表面平均紋理深度(Mean Texture Depth,MTD)及計算瀝青薄膜厚度(Asphalt Film Thickness)來評估不同級配對界面剪力強度之影響。
利用黏層材料之破乳比率公式能更合理定義黏層材料CRS-1與橡膠乳化瀝青在25℃且噴灑量為0.35 L/m2之破乳時間約為0.75小時;透過黏層材料的黏度發展亦可定義黏層材料之破乳時間,試驗結果顯示噴灑量為0.35 L/m2之CRS-1與橡膠乳化瀝青於25℃養護達0.75小時後,其黏度已呈穩定狀況,因此其破乳時間可視為0.75小時。於25℃最佳黏層噴灑量試驗之結果顯示噴灑黏層沒有顯著提升剪力強度;試驗溫度為50℃時,其剪力強度受黏層噴灑量多寡的影響不大。
在黏層養護時間之試驗中,發現剪力強度確實是受黏層養護時間的影響,因此透過黏層材料之破乳比率或黏度發展來量化黏層破乳時間是有其必要性。透過Mohr-Coulomb破壞法則,可知界面黏結力受黏層試體級配的影響相當大,不同黏層試體之黏結力大小為IVc-IVc級配>PA-IVc級配>PA-SMA級配,試驗結果亦顯示噴灑黏層有顯著降低PA-SMA級配之黏結力。在不同試驗溫度中,發現溫度變化對瀝青混凝土界面剪力強度或黏結力皆有顯著的影響,低溫時有較高的剪力強度及黏結力;由試驗結果亦發現PA-SMA級配之剪力強度受溫度變化影響最小。以CRS-1作為黏層材料時,其剪力強度有隨著黏層試體養護時間增加而有升高的趨勢,以鋪面長期績效來看,噴灑黏層似乎有助於瀝青混凝土界面剪力強度的增加。
Tack coat is often used in the engineering project of new construction and maintenance of asphalt concrete pavement. At present, the relative construction norm of tack coat in Taiwan have neither detailed definition on the breaking time of tack coat material, nor does suggest or restrict to use what kind of tack coat material for different overlay type. Therefore, it’s necessary to explore the influence of the type, application rates, curing time of tack coat material and test temperature on the shear strength of interface of pavement. This research choose CRS-1, emulsified asphalt of rubber to be tack coat material and use the direction shear testing apparatus of rock mechanics test to explore the influence of tack coat on shear strength of interface of asphalt concrete.
The result of this study shows that shear strength of interface is influenced by curing time of tack coat indeed. It can quantize the breaking time of tack coat reasonably through the ratio of breaking time or viscousness development of tack coat material. According to destroy criterion of Mohr-Coulomb, we know that the influence of cohesion of interface by specimen gradation of tack coat is quite great. The degree of cohesion of interface among different specimen of tack coat would be:IVc-IVc gradation>PA-IVc gradation>PA-SMA gradation. We find that there are notable influence of the change of temperature on shear strength and cohesion of interface of asphalt concrete. There are higher shear strength and cohesion in low temperature. We also find that change of temperature had least influence on the shear strength of PA-SMA gradation through the result of test. With the increase of curing time of specimen of tack coat, the shear strength have trend of increase when CRS-1 is regarded as tack coat material. In view of the long-term performance of pavement, tack coat seems to be helpful to increase the shear strength of interface of asphalt concrete.
中華鋪面工程學會 (2004). 英漢鋪面名詞彙編(第一版),台南。
中華鋪面工程學會 (2004). 近代新瀝青混凝土路面材料及產製鋪設技術,台南。
交通部統計處 (2004). 中華民國九十三年交通統計要覽,台北。
行政院公共工程委員會 (2004). 公共工程施工綱要規範,台北。
沈得縣 (2001). 道路鋪面黏層、透層及封層材料規範草案之研究,交通部科技顧問室研究報告,台北。
陳建旭、林志憲 (2001). 「發展柔性鋪面行車軌跡之厚度設計」,中華道路期刊,第四十卷,第一期,第4-16頁。
廖正傑 (2004). 南部軟岩於環形剪力試驗及力學特性之研究,國立成功大學土木工程研究所碩士論文,台南。
鍾坤生 (2005). 不同級配與纖維對瀝青混凝土工程性質之影響,國立成功大學土木工程研究所碩士論文,台南。
盧俊愷、蔡攀鰲、彭俊翔、陳國琛 (1996). 「南台灣柔性鋪面溫度分佈探討-以高速公路新市收費站為例」,中國土木水利工程學刊,第23卷,第3期,第39-50頁。
Canestrari, F., and Santagata, E. (2005). “Temperature Effects on the Shear Behaviour of Tack Coat Emulsions Used in Flexible Pavement,” The International Journal of Pavement Engineering, Vol. 6, pp.39-46.
Kruntcheva, M. R., Collop,A. C., and Thom, N. H. (2006). “Properties of Asphalt Concrete Layer Interfaces,” Journal of Materials in Civil Engineering, ASCE, Vol. 18, pp.467-471.
Mrawira, D., and Damude, D. J. (1999). “Revisiting the Effectiveness of Tack Coats in HMA Overlays: The Shear Strength of in Young Overlays,” Proceedings of 14th Annual Conference, Canadian Technical Asphalt Association Proceedings, pp.116-129.
Metcalf, J.B., Li, Y., Romanoschi, S. A., and Rasoulian, M. (1999). “Comparison of Louisiana’s Conventional and Alternative Base Courses under Accelerated Loading,” Louisiana Transportation Research Center Final Report, Baton Rouge.
Mohammad, L. N., Raqib, M. A., and Huang, B. (2002). “Influence of Asphalt Tack Coat Materials on Interface Shear Strength,” Transportation Research Record 1789, pp.56-65.
Paul, H.R., and Scherocman, J. A. (1998). “Friction Testing of Tack Coat Surfaces,” Transportation Research Record 1616, pp.6-12.
Roberts, F. L., Kandhal, P. S., Brown, E. R., Lee, D. Y., and Kennedy, T. W. (1996). Hot Mix Asphalt Materials, Mixture Design, and Construction, NAPA Education Foundation Lanham, Maryland, pp.501-502.
Romanoschi, S. A., and Metcalf, J. B. (2001). “Characterization of Asphalt Concrete Layer Interfaces,” Transportation Research Record 1778, pp.132-139.
Sholar, G. A., Page, G. C., Musselman, J. A., Upshaw, P. B., and Moseley, H. L. (2004). “Preliminary Investigation of a Test Method to Evaluate Bond Strength of Bituminous Tack Coats,” Journal of the Association of Asphalt Paving Technologists, Vol. 73, pp.771-806.
Shahin, M. Y. (1994). Pavement Management for Airports and Parking Lots, Champman & Hall, New York.
Sondag, M. S. (2002). “Investigation of Recycled Asphalt Pavement(RAP) Mixtures,” Department of Civil Engineering University of Minnesota Final Report, pp.1-83.