簡易檢索 / 詳目顯示

研究生: 趙益承
Chao, Yi-Cheng
論文名稱: 雙邊不對稱球體之磁操控與異向性行為
Magnetic Manipulation and Anisotropic Performance of Bi-Functionalized Janus Particles
指導教授: 郭昌恕
Kuo, Chang-Shu
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 100
中文關鍵詞: 雙邊不對稱球體異向性磁操控光致發光微米級電紡絲
外文關鍵詞: Janus Particles, Anisotropic, Magnetic Manipulation, Photoluminescence, Electrospun Microfibers
相關次數: 點閱:112下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文探討同時具有磁性及光學兩種異向性之表面不對稱二氧化矽球體,於外加磁場下球體的運動行為,及隨之表現出之光學特性改變。並利用探討相對應光學特性之改變,反饋回磁性驅動之球體運動行為模式。
    藉由二氧化矽球體於高分子基材上之嵌入、表面改質以及表面蝕刻的方式,為製造表面不對稱球體(asymmetric Janus particles)的方法。我們利用電紡絲技術將兩種不同親疏水性高分子-聚甲基丙烯酸甲酯(polymethyl methacrylate)和聚四乙烯吡啶(poly 4-vinylpyridine)的混合溶液,電紡成具有高比表面積的高分子纖維,作為球體吸附以及嵌入之基材。二氧化矽表面的矽醇(silanol)官能基和聚四乙烯吡啶的吡啶(pyridine)官能基,能夠提供二氧化矽球體吸附於高分子纖維的作用力。藉由熱誘導法,我們可以均勻且準確地控制球體嵌入高分子基材。利用化學蒸鍍的方式,將露出的二氧化矽球表面矽烷化,並隨後將氧化鐵的奈米粒子組裝到二氧化矽球的表面。再經由鹼液蝕刻跟後續二次化學蒸鍍,矽烷化之露出球體表面充滿一級胺官能基,最後於甲醇溶液中進行螢光染料之接枝,完成同時具有光學與磁性空間分布不對稱特性之二氧化矽球體。
    本研究使用的二氧化矽球體直徑為500奈米,無法藉由傳統光學顯微鏡直接清楚地觀測其對外加磁場的反應。而是藉由雙邊不對稱球體另一面螢光物質於外加磁場下的光學特性的改變,間接地反應出球體本身的運動行為。藉由磁場操控雙邊不對稱球體,可以表現出明顯的螢光強度差異,並同時探討影響雙邊不對稱球體異向性行為的主要因素。

    In this research work, asymmetric Janus particles with anisotropically magnetic and optical properties are fabricated and characterized for their magnetic and optical behaviors. The optical behavior corresponding to external magnetic field is studied and feedback to build the particle movement model under external magnetic field.
    A synthetic approach for the fabrication of asymmetric Janus particles was demonstrated by sequential thermal embedment, surface modification of silica particles, and etching of exposed particle surfaces. Electrospinning of poly(methyl methacrylate) (PMMA) and poly(4-vinylpyridine) (P4VP) blends produced polymer fibers with high specific surfaces for the particle adsorption and embedment. Adsorption of silica particles onto fiber surfaces was established by the interaction between silanol functional groups on silica surface and pyridine functional groups of P4VP. The thermally-induced particle embedment was precisely manipulated by the heat treatment, which allowed the uniform and controllable embedding. The exposed particle surfaces were selectively modified by the chemical vapor deposition of silanes with amino functional groups, followed by attaching with magnetite (Fe3O4) nanoparticles. The silica particles decorated with Fe3O4 nanoparticles were sequentially thermal-embedded into polymer fibers, and the exposed hemispheric surfaces were etched by sodium hydroxide solution to clean the attached Fe3O4 nanoparticles. The cleaned hemispheric surfaces were modified again by the chemical deposition to provide the linkage to dye molecules. Finally, the silica particles were released by dissolving polymer fibers. Fabrications and characterization of these bi-functionalized Janus particles were carefully conducted.
    The responses of Fe3O4/Dye Janus particles to the external magnetic field were examined by their photoluminescence performance. The variation in photoluminescence intensity and anisotropism indicated the Fe3O4/Dye Janus particles drifted under the applied magnetic field. The main parameter that affected the anisotropic performance of Fe3O4/Dye Janus particles were also investigated and discussed. Through magnetic manipulation of Fe3O4/Dye Janus particles, the optical difference in photoluminescence intensity was successfully demonstrated.

    中文摘要 I Abstract III 致謝 V Table of Contents VI List of Tables VIII List of Illustrations IX Chapter 1. Introduction 1 1.1 Janus particles and asymmetric micro- and nano- materials 1 1.1.1 Janus-like Materials 2 1.1.2 Fabrications of Janus Particles 8 1.1.3 One-dimensional Electrospun Polymer Fibers as Particle Embedding Substrates 18 1.1.4 Applications 21 1.2 Manipulation of Janus Particles by Magnetic Field 26 1.2.1 Magnetic-induced Self-assembly 26 1.2.2 Particle Orientation 29 1.2.3 Anisotropic Optical Properties 32 1.2.4 Applications of Magnetically-driven Janus Particles 34 Chapter 2. Research Motivations 36 Chapter 3. Experimental 38 3.1 Chemicals 38 3.2 Instruments Used in the Material Fabrication 41 3.3 Preparations of Fe3O4/Dye Janus Particles 42 3.3.1 Preparation of 500 nm Silica Particle Solution 42 3.3.2 Preparation of 15 nm Magnetite (Fe3O4) Particle Solution 42 3.3.3 Electrospinning of PMMA/P4VP Blend Fibers 42 3.3.4 Dipping Process of 500 nm Silica Particles 46 3.3.5 1st APS Modification Process 46 3.3.6 Magnetite (Fe3O4) Nanaoparticles Attachment Process 48 3.3.7 Heat Treatment Process (Thermal Embedding Process) 48 3.3.8 Etching Process and 2nd APS Modification Process 48 3.3.9 Polymer Fibers Dissolving Process 49 3.3.10 Dye Grafting Process 49 3.4 Analytical Instruments 50 3.4.1 UV-vis Spectrometer (UV-vis) 50 3.4.2 Photoluminescence Spectroscopy (PL) 50 3.4.3 Scanning Electron Microscopy (SEM) 52 3.4.4 Particle Size Distribution 52 3.4.5 Dark Field Optical Microscopy 55 Chapter 4. Results and Discussion 56 4.1 Synthesis of Fe3O4/Dye Janus Particles 56 4.1.1 Functionalized Silica Particles and Their Embedding Behaviors 59 4.1.2 Magnetite (Fe3O4) Nanoparticle Attachment 68 4.1.3 Influences of Reaction Time on Dye Grafting Process 71 4.2 Magnetic Manipulation of Fe3O4/Dye Janus Particles 77 4.2.1 Self-assembly 77 4.2.2 Anisotropic Optical Properties 82 Chapter 5. Conclusion 95 Reference 96

    1.Perro, A.; Reculusa, S.; Ravaine, S.; Bourgeat-Lami, E. B.; Duguet, E., Design and synthesis of Janus micro- and nanoparticles. Journal of Materials Chemistry 2005, 15 (35-36), 3745-3760.
    2.Degennes, P. G., SOFT MATTER (NOBEL LECTURE). Angewandte Chemie-International Edition in English 1992, 31 (7), 842-845.
    3.Cho, I.; Lee, K. W., MORPHOLOGY OF LATEX-PARTICLES FORMED BY POLY(METHYL METHACRYLATE)-SEEDED EMULSION POLYMERIZATION OF STYRENE. Journal of Applied Polymer Science 1985, 30 (5), 1903-1926.
    4.Casagrande, C.; Fabre, P.; Raphael, E.; Veyssie, M., JANUS BEADS - REALIZATION AND BEHAVIOR AT WATER OIL INTERFACES. Europhysics Letters 1989, 9 (3), 251-255.
    5.Liu; Abetz, V.; Muller, A. H. E., Janus Cylinders. Macromolecules 2003, 36 (21), 7894-7898.
    6.Walther, A.; Drechsler, M.; Rosenfeldt, S.; Harnau, L.; Ballauff, M.; Abetz, V.; Muller, A. H. E., Self-Assembly of Janus Cylinders into Hierarchical Superstructures. Journal of the American Chemical Society 2009, 131 (13), 4720-4728.
    7.Jakobs, R. T. M.; Herrikhuyzen, J. v.; Gielen, J. C.; Christianen, P. C. M.; Meskers, S. C. J.; Schenning, A. P. H. J., Self-assembly of amphiphilic gold nanoparticles decorated with a mixed shell of oligo(p-phenylene vinylene)s and ethyleneoxide ligands. Journal of Materials Chemistry 2008, 18 (29), 3438-3441.
    8.Zerrouki, D.; Baudry, J.; Pine, D.; Chaikin, P.; Bibette, J., Chiral colloidal clusters. Nature 2008, 455 (7211), 380-382.
    9.Koo, H. Y.; Yi, D. K.; Yoo, S. J.; Kim, D. Y., A snowman-like array of colloidal dimers for antireflecting surfaces. Advanced Materials 2004, 16 (3), 274-+.
    10.Ho, C. C.; Chen, W. S.; Shie, T. Y.; Lin, J. N.; Kuo, C., Novel fabrication of Janus particles from the surfaces of electrospun polymer fibers. Langmuir 2008, 24 (11), 5663-5666.
    11.McConnell, M. D.; Kraeutler, M. J.; Yang, S.; Composto, R. J., Patchy and Multiregion Janus Particles with Tunable Optical Properties. Nano Letters 2010, 10 (2), 603-609.
    12.Ye, S. R.; Carroll, R. L., Design and Fabrication of Bimetallic Colloidal "Janus" Particles. Acs Applied Materials & Interfaces 2010, 2 (3), 616-620.
    13.Smoukov, S. K.; Gangwal, S.; Marquez, M.; Velev, O. D., Reconfigurable responsive structures assembled from magnetic Janus particles. Soft Matter 2009, 5 (6), 1285-1292.
    14.Berger, S.; Synytska, A.; Ionov, L.; Eichhorn, K. J.; Stamm, M., Stimuli-Responsive Bicomponent Polymer Janus Particles by "Grafting from"/"Grafting to" Approaches. Macromolecules 2008, 41 (24), 9669-9676.
    15.Wang, Y.; Hernandez, R. M.; Bartlett, D. J.; Bingham, J. M.; Kline, T. R.; Sen, A.; Mallouk, T. E., Bipolar Electrochemical Mechanism for the Propulsion of Catalytic Nanomotors in Hydrogen Peroxide Solutions†. Langmuir 2006, 22 (25), 10451-10456.
    16.Nisisako, T.; Torii, T.; Takahashi, T.; Takizawa, Y., Synthesis of monodisperse bicolored janus particles with electrical anisotropy using a microfluidic co-flow system. Advanced Materials 2006, 18 (9), 1152-+.
    17.Nie, Z. H.; Li, W.; Seo, M.; Xu, S. Q.; Kumacheva, E., Janus and ternary particles generated by microfluidic synthesis: Design, synthesis, and self-assembly. Journal of the American Chemical Society 2006, 128, 9408-9412.
    18.Wu, S. M., Bicolored "Janus" particles with electrical anisotropy synthesized using a microfluidic co-flow system. Mrs Bulletin 2006, 31 (7), 502-503.
    19.Shepherd, R. F.; Conrad, J. C.; Rhodes, S. K.; Link, D. R.; Marquez, M.; Weitz, D. A.; Lewis, J. A., Microfluidic Assembly of Homogeneous and Janus Colloid-Filled Hydrogel Granules. Langmuir 2006, 22 (21), 8618-8622.
    20.Nisisako, T.; Torii, T., Formation of biphasic Janus droplets in a microfabricated channel for the synthesis of shape-controlled polymer microparticles. Advanced Materials 2007, 19 (11), 1489-+.
    21.Roh, K. H.; Martin, D. C.; Lahann, J., Biphasic Janus particles with nanoscale anisotropy. Nature Materials 2005, 4 (10), 759-763.
    22.Roh, K.-H.; Yoshida, M.; Lahann, J., Water-Stable Biphasic Nanocolloids with Potential Use as Anisotropic Imaging Probes. Langmuir 2007, 23 (10), 5683-5688.
    23.Hong, L.; Jiang, S.; Granick, S., Simple Method to Produce Janus Colloidal Particles in Large Quantity. Langmuir 2006, 22, 9495-9499.
    24.Li, Z. F.; Lee, D. Y.; Rubner, M. F.; Cohen, R. E., Layer-by-layer assembled janus microcapsules. Macromolecules 2005, 38 (19), 7876-7879.
    25.Correa-Duarte, M. A.; Salgueirino-Maceira, V.; Rodriguez-Gonzalez, B.; Liz-Marzan, L. M.; Kosiorek, A.; Kandulski, W.; Giersig, M., Asymmetric functional colloids through selective hemisphere modification. Advanced Materials 2005, 17 (16), 2014-+.
    26.Cayre, O. J.; Paunov, V. N., Contact Angles of Colloid Silica and Gold Particles at Air−Water and Oil−Water Interfaces Determined with the Gel Trapping Technique. Langmuir 2004, 20 (22), 9594-9599.
    27.Paunov, V. N.; Cayre, O. J., Supraparticles and “Janus” Particles Fabricated by Replication of Particle Monolayers at Liquid Surfaces Using a Gel Trapping Technique. Advanced Materials 2004, 16 (9-10), 788-791.
    28.Cui, J.-Q.; Kretzschmar, I., Surface-Anisotropic Polystyrene Spheres by Electroless Deposition. Langmuir 2006, 22 (20), 8281-8284.
    29.He, Y.; Li, K., Novel Janus Cu2(OH)2CO3/CuS microspheres prepared via a Pickering emulsion route. Journal of Colloid and Interface Science 2007, 306 (2), 296-299.
    30.Binks, B. P.; Lumsdon, S. O., Pickering emulsions stabilized by monodisperse latex particles: Effects of particle size. Langmuir 2001, 17 (15), 4540-4547.
    31.Zhu, M. W.; Li, Y. M.; Meng, T.; Zhan, P.; Sun, J.; Wu, J.; Wang, Z. L.; Zhu, S. N.; Ming, N. B., Controlled strain on a double-templated textured polymer film: a new approach to patterned surfaces with Bravais lattices and chains. Langmuir 2006, 22 (17), 7248-7253.
    32.Jiang, S.; Chen, Q.; Tripathy, M.; Luijten, E.; Schweizer, K. S.; Granick, S., Janus Particle Synthesis and Assembly. Advanced Materials 2010, 22 (10), 1060-1071.
    33.Behrend, C. J.; Anker, J. N.; McNaughton, B. H.; Kopelman, R., Microrheology with modulated optical nanoprobes (MOONs). J. Magn. Magn. Mater. 2005, 293, 663-670.
    34.Anthony, S. M.; Kim, M.; Granick, S., Single-particle tracking of janus colloids in close proximity. Langmuir 2008, 24 (13), 6557-6561.
    35.Honegger, T.; Lecarme, O.; Berton, K.; Peyrade, D., 4-D dielectrophoretic handling of Janus particles in a microfluidic chip. Microelectronic Engineering 87 (5-8), 756-759.
    36.Anthony, S. M.; Hong, L.; Kim, M.; Granick, S., Single-particle colloid tracking in four dimensions. Langmuir 2006, 22 (24), 9812-9815.
    37.Jiang, S.; Granick, S., Janus balance of amphiphilic colloidal particles. Journal of Chemical Physics 2007, 127.
    38.Jiang, S.; Granick, S., Controlling the geometry (Janus balance) of amphiphilic colloidal particles. Langmuir 2008, 24 (6), 2438-2445.
    39.Hong, L.; Cacciuto, A.; Luijten, E.; Granick, S., Clusters of amphiphilic colloidal spheres. Langmuir 2008, 24 (3), 621-625.
    40.Binsk, B. P.; Fletcher, P. D. I., Particles adsorbed at the oil-water interface: A theoretical comparison between spheres of uniform wettability and "Janus" particles. Langmuir 2001, 17 (16), 4708-4710.
    41.Cheung, D. L.; Bon, S. A. F., Stability of Janus nanoparticles at fluid interfaces. Soft Matter 2009, 5 (20), 3969-3976.
    42.Gangwal, S.; Cayre, O. J.; Bazant, M. Z.; Velev, O. D., Induced-charge electrophoresis of metallodielectric particles. Physical Review Letters 2008, 100 (5).
    43.Kinnunen, P.; Sinn, I.; McNaughton, B. H.; Kopelman, R., High frequency asynchronous magnetic bead rotation for improved biosensors. Appl. Phys. Lett. 2010, 97, 223701/1-223701/3.
    44.McNaughton, B. H.; Kinnunen, P.; Smith, R. G.; Pei, S. N.; Torres-Isea, R.; Kopelman, R.; Clarke, R., Compact sensor for measuring nonlinear rotational dynamics of driven magnetic microspheres with biomedical applications. J. Magn. Magn. Mater. 2009, 321, 1648-1652.
    45.McNaughton, B. H.; Agayan, R. R.; Wang, J. X.; Kopelman, R., Physiochemical microparticle sensors based on nonlinear magnetic oscillations. Sens. Actuators, B 2007, B121, 330-340.
    46.Isojima, T.; Suh, S. K.; Sande, J. B. V.; Hatton, T. A., Controlled Assembly of Nanoparticle Structures: Spherical and Toroidal Superlattices and Nanoparticle-Coated Polymeric Beads. Langmuir 2009, 25 (14), 8292-8298.
    47.Li, F.; Josephson, D. P.; Stein, A., Colloidal Assembly: The Road from Particles to Colloidal Molecules and Crystals. Angewandte Chemie-International Edition 2011, 50 (2), 360-388.
    48.Conradi, M.; Ravnik, M.; Bele, M.; Zorko, M.; Zumer, S.; Musevic, I., Janus nematic colloids. Soft Matter 2009, 5 (20), 3905-3912.
    49.Parsina, I.; Baletto, F., Tailoring the Structural Motif of AgCo Nanoalloys: Core/Shell versus Janus-like. Journal of Physical Chemistry C 2010, 114 (3), 1504-1511.
    50.Obeid, R.; Park, J. Y.; Advincula, R. C.; Winnik, F. M., Temperature-dependent interfacial properties of hydrophobically end-modified poly(2-isopropyl-2-oxazoline)s assemblies at the air/water interface and on solid substrates. Journal of Colloid and Interface Science 2009, 340 (2), 142-152.
    51.Bong, K. W.; Chapin, S. C.; Doyle, P. S., Magnetic Barcoded Hydrogel Microparticles for Multiplexed Detection. Langmuir 2010, 26 (11), 8008-8014.
    52.Dyab, A. K. F.; Ozmen, M.; Ersoz, M.; Paunov, V. N., Fabrication of novel anisotropic magnetic microparticles. Journal of Materials Chemistry 2009, 19 (21), 3475-3481.
    53.Yuet, K. P.; Hwang, D. K.; Haghgooie, R.; Doyle, P. S., Multifunctional Superparamagnetic Janus Particles. Langmuir 2010, 26 (6), 4281-4287.
    54.Kim, S. H.; Sim, J. Y.; Lim, J. M.; Yang, S. M., Magnetoresponsive Microparticles with Nanoscopic Surface Structures for Remote-Controlled Locomotion. Angewandte Chemie-International Edition 2010, 49 (22), 3786-3790.
    55.McNaughton, B. H.; Shlomi, M.; Kinnunen, P.; Cionca, C.; Pei, S. N.; Clarke, R.; Argyrakis, P.; Kopelman, R., Magnetic confinement of Brownian rotation to a single axis and application to Janus and cluster microparticles. Appl. Phys. Lett. 2010, 97, 144103/1-144103/3.
    56.Muinonen, K.; Lagerros, J. S. V., Inversion of shape statistics for small solar system bodies. Astronomy and Astrophysics 1998, 333 (2), 753-761.
    57.Hu, S. H.; Gao, X. H., Nanocomposites with Spatially Separated Functionalities for Combined Imaging and Magnetolytic Therapy. Journal of the American Chemical Society 2010, 132 (21), 7234-+.
    58.Malloggi, F.; Pannacci, N.; Attia, R. l.; Monti, F.; Mary, P.; Willaime, H.; Tabeling, P.; Cabane, B.; Poncet, P., Monodisperse Colloids Synthesized with Nanofluidic Technology. Langmuir 2009, 26 (4), 2369-2373.
    59.Shvedova, A. A.; Kisin, E. R.; Porter, D.; Schulte, P.; Kagan, V. E.; Fadeel, B.; Castranova, V., Mechanisms of pulmonary toxicity and medical applications of carbon nanotubes: Two faces of Janus? Pharmacology & Therapeutics 2009, 121 (2), 192-204.
    60.Sun, B.; Sun, M. J.; Gu, Z.; Shen, Q. D.; Jiang, S. J.; Xu, Y.; Wang, Y., Conjugated Polymer Fluorescence Probe for Intracellular Imaging of Magnetic Nanoparticles. Macromolecules 2010, 43 (24), 10348-10354.
    61.McNaughton, B. H.; Stoica, V. A.; Anker, J. N.; Tyner, K. M.; Clarke, R.; Kopelman, R., Fabrication of nanoparticles and microspheres with uniform magnetic half-shells. Mater. Res. Soc. Symp. Proc. 2006, 899E, No pp. given, Paper #: 0899-N04-03.
    62.Lim, D. W.; Hwang, S.; Uzun, O.; Stellacci, F.; Lahann, J., Compartmentalization of Gold Nanocrystals in Polymer Microparticles using Electrohydrodynamic Co-Jetting. Macromolecular Rapid Communications 2010, 31 (2), 176-182.
    63.Bhaskar, S.; Roh, K. H.; Jiang, X. W.; Baker, G. L.; Lahann, J., Spatioselective Modification of Bicompartmental Polymer Particles and Fibers via Huisgen 1,3-Dipolar Cycloaddition. Macromolecular Rapid Communications 2008, 29 (20), 1655-1660.

    下載圖示 校內:2021-12-31公開
    校外:2021-12-31公開
    QR CODE