簡易檢索 / 詳目顯示

研究生: 張育湶
Chang, Yu-Chuan
論文名稱: 奈米銀漿料與低溫燒結於第二代超導線材接合之研究
Study of second generation HTS tape joint by low temperature sintering of nano-silver paste
指導教授: 陳引幹
Chen, In-Gann
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 87
中文關鍵詞: 2G 超導線材線材接合奈米銀漿料電流加熱外加磁場量測
外文關鍵詞: 2G superconducting tape, 2G tape joint, nano-silver paste, Current heating, Measurement under applied magnetic field
相關次數: 點閱:95下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 第二代(2G)高溫超導線材在液氮冷卻條件下,於高磁場中具備高電流密度特性(Jc~105A/mm2 at 77K, 3T),能應用於超導MRI、超導馬達、超導磁浮列車…等,但受超導線材長度之限制,至今仍無法大規模商業化應用。為此本研究嘗試於開發能快速接合且低接合電阻之接合方法。本研究分為三階段逐步推進,於第一階段中實驗多種接合方法(如直接機械接合方法、銦片加壓接合方法、奈米銀漿料管型爐加熱法等),並比較各接合方法之優劣;於第二階段中改良奈米銀漿料管型爐加熱製程,改以大電流通過奈米銀漿料接合區域,藉由接合區域內的電阻熱作為熱源快速完成線材之接合,提高接合樣品的製作效率;而第三階段中在奈米銀漿料中混入適當比例的超導粉末,並結合外接機械模具和電流加熱製程於蝕刻後之超導線材上,預期可透過機械壓力、電流加熱燒結使超導粉末與超導磊晶層(Sc-Y123-Sc)間緊密連接實現超導接合。
    於第一階段實驗中,由各接合實驗成果可知接合介面的不平整是導致高接合比電阻產生的原因,而蝕刻後線材受超導磊晶層的介面上凸起物影響,造成超導直接機械接合(Sc-Sc)的接合比電阻高達580 μΩ•cm2。而於銦片加壓接合實驗(Sc-In-Sc)可知加入適當接合材料能夠有效降低接合比電阻達兩數量級。而續於管型爐實驗部分,以銀漿料取代銦片改善接合強度,並進行一系列奈米銀漿料管型爐加熱實驗(Cu-Ag-Cu),得到最佳熱處理溫度區間為200~215℃區段,其接合比電阻(200 nΩ•cm2)與同類型文獻(48 nΩ•cm2)僅差距4倍。
    於第二階段實驗中,以電流加熱取代管型爐加熱製程,透過調控適當製程參數優化(銅條輔助減少氧化、提高接合壓力、預先乾燥處理…等),能夠於15分鐘內快速完成接合,其接合成果(接合比電阻約為470 nΩ•cm2)能與管型爐加熱樣品達同一數量級而加熱前後樣品的臨界電流值僅下降<2%。另外於此階段對樣品進行不同方向、大小之外加磁場量測,量測結果顯示無論何種製程之銀漿料接合樣品與純線材趨勢相同(隨著外加磁場增加而減少,下降幅度隨磁場值提高而趨緩),說明接合前後不影響線材本身的超導性質,此外嘗試透過擄磁實驗分析線材之接合情形,初步可觀察到擄磁之強度變化與線材超導性質相關。
    於第三階段實驗中,以混入超導粉末之銀漿料於蝕刻後線材上進行接合(Sc-Ag(50 wt% Y123)-Sc)搭配前述優化過之電流加熱參數進行接合,目前最佳接合比電阻為96 μΩ•cm2,與超導直接機械接合相比約下降半個數量級,於未來仍有提升的空間。

    The main limitation preventing superconducting coils from being used on a large scale is the insufficient length of 2G superconducting tapes; therefore, it is necessary to develop suitable jointing techniques to lengthen the tapes. In this study, various solder joints (including solder-free, indium sheet and nano-silver paste) were made and compared with each other. Among them, the nano-silver paste joint has the smallest specific resistance (~0.2 μΩ•cm2) and a higher joining strength. However, the nano-silver paste joint needs to be heated in a tube furnace for 1.5 hours for sintering. In order to reduce the process time, we developed a Joule heating process heated by electric current to sinter nano-silver paste at the junction. The specific resistance value of the Joule-heated sample is about 0.47μΩ•cm2, which is the same order of magnitude as the tube furnace heating sample. Notably, the Ic percentage of the Joule heating sample is about 98% better than the tube furnace heating sample (85%), and the process time is only 15 minutes. Finally, we measured the 2G tape, the tube furnace heating sample, and the Joule heating sample under a magnetic field. The same downward trend was observed in all the samples, indicating that the furnace heating and Joule heating process will not affect the Ic of the 2G HTS tape under a magnetic field.

    摘要 I 致謝 VII 目錄 VIII 表目錄 X 圖目錄 XI 第一章 緒論 1 1-1 研究背景與動機 1 1-2 研究目的 2 第二章 理論基礎及文獻回顧 4 2-1 超導體的基本性質與相關理論 4 2-1-1 超導體定義與臨界條件 4 2-1-2 Josephson effect與弱接點效應(Weak-link effect)[7] 6 2-2 RE-BA-CU-O 超導線材 8 2-2-1 Re-Ba-Cu-O超導塊材結構與性質 8 2-2-2 超導線材之發展與分類 9 2-2-3 REBCO超導線材之相關應用 13 2-3超導線材之接合方法 17 2-3-1 Solder joint 17 2-3-2 Diffusion joint[35、36] 19 2-3-3 Superconductor joint 20 2-4 接合電阻之量測 25 第三章 實驗方法及步驟 29 3-1 實驗材料 29 3-2實驗流程與步驟 30 3-2-1 線材接合前處理 31 3-2-2線材接合實驗階段 32 3-2-3接合成果分析階段 34 3-3 實驗設備與性質分析 34 3-3-1超導電性量測(四點量測法) 35 3-3-2 室溫電阻分析 35 3-3-3表面形貌及元素成分分析 36 第四章 實驗結果與討論 42 4-1直接加壓接合 42 4-1-1 超導直接加壓接合 42 4-1-2 銦片加壓接合實驗 49 4-2 銀漿料接合—未蝕刻線材 51 4-2-1 管型爐加熱接合實驗 51 4-2-2 電流加熱接合實驗 56 4-3 不同外加磁場下臨界電流變化(含FITTING) 65 4-3-1超導線材 66 4-3-2管型爐加熱樣品 66 4-3-3電流加熱實驗樣品 66 4-3-4小結 67 4-4 蝕刻線材之銀漿料接合(含超導粉末) 75 4-4-1 通電加熱 75 第五章 結論 78 參考文獻 81

    [1] E. Snider, N. Dasenbrock-Gammon, R. McBride, et al. "Room-temperature superconductivity in a carbonaceous sulfur hydride," Nature, Vol.586, pp.373–377, 2020.
    [2] A. Gurevich, "To use or not to use cool superconductors," Nature Materials, Vol.10, pp.255–259, 2011.
    [3] https://www.superpower-inc.com/specification.aspx (Superpower超導線材公司官方網頁)
    [4] S. Iguchi, R. Piao, M. Hamada, et al. "Advanced field shimming technology to reduce the influence of a screening current in a REBCO coil for a high-resolution NMR magnet," Supercond. Sci. Technol., Vol.29, No.4, 2016.
    [5] S.H. Moon, "HTS Development and Industrialization at SuNAM," 1st Workshop on Accelerator Magnets in HTS (Hamburg, Germany), 2014.
    [6] Y. Yanagisawa, R. Piao, S. Iguchi, et al. " Operation of a 400 MHz NMR magnet using a (RE:Rare Earth)Ba2Cu3O7-x high temperature superconducting coil: Towards an ultra-compact super-high field NMR spectrometer operated beyond 1 GHz," Journal of Magnetic Resonance, Vol.249, pp.38–48, 2014.
    [7] B.D. Josephson, "Possible new effects in superconductive tunnelling," Physics Letters, Vol.1, Issue 7, pp 251–253, 1962.
    [8] Ivar Giaever, "Electron Tunneling Between Two Superconductors," Phys. Rev. Lett, Vol.5, pp.464–466, 1960.
    [9] D. Larbalestier, A. Gurevich, D. M. Feldmann, et al. "High-Tc superconducting materials for electric power applications," Nature, Vol.414, pp.368–377, 2001.
    [10] P. Benzi, E. Bottizzo, N. Rizzi, "Oxygen determination from cell dimensions in YBCO superconductors," Journal of Crystal Growth, Vol.269, pp.625–629, 2004.
    [11] C. Vijayakumar, C. M. Brightson, S. L. Rayar, et al. "Development of YBa2Cu3O7- δ superconducting thick film on Ba2SmSbO6 substrate material synthesised by combustion technique,"Journal of Experimental Nanoscience, Vol.9, No.5 , pp.525–532, 2014.
    [12] T. Hatano, A. Matsushita, K. Nakamura, et al. "Superconducting and Transport Properties of B-Y-Cu-O Compounds –Orthorhombic and Tetragonal Phases," J. Appl. Phys., Vol.26, pp.721–723, 1987.
    [13] D. Uglietti, "A review of commercial high temperature superconducting materials for large magnets: from wires and tapes to cables and conductors," Supercond. Sci. Technol., Vol.32, Issue.7, 2019.
    [14] Y. Lvovsky, E. W. Stautner, T. Zhang, "Novel technologies and configurations of superconducting magnets for MRI," Supercond. Sci. Technol., Vol.26, No.9, 2013.
    [15] S. X. Dou, H. K. Liu, "Ag-sheathed Bi(Pb)SrCaCuO superconducting tapes," Supercond. Sci. Technol., Vol.6, No5, pp.297–314, 1993.
    [16] T. Nakane, K. Takahashi, H. Kitaguchi, et al. "Fabrication of Cu-sheathed MgB2 wire with high Jc–B performance using a mixture of in situ and ex situ PIT techniques," Physica C:Superconductivity, Vol.469, pp.1531–1535, 2009.
    [17] C. Senatore, M. Alessandrini, A. Lucarelli, et al. "Progresses and challenges in the development of high-field solenoidal magnets based on RE123 coated conductors," Supercond. Sci. Technol., Vol.27, No.10, 2014.
    [18] Nexans(Germary), "Saving space in city centers: Medium voltage superconductor cables can replace high voltage power transmission", (網址: https://reurl.cc/ZGjVkW), 最後瀏覽:2021/06/06。
    [19] Institution of mechanical engineer, "World's longest superconductor cable proves successful", 2014/10/30, (網址: https://reurl.cc/dGxyXV ) ,最後瀏覽日: 2021/06/06。
    [20] 香港新聞網,「中國首條公里級高溫超導電纜示範工程啟動」,2019/02/25,以下網址可供閱覽:http://www.hkcna.hk/content/2019/0222/746681.shtml,最後瀏覽日: 2021/06/06。
    [21] EAST FORCE原力超導,「超導線圈單線雙餅繞製方法講解」,以下網址可供閱覽: http://www.eastfs.com/newsitem/278493590,最後瀏覽日: 2021/06/06。
    [22] 中國教育網,「世界首條超導高速磁浮工程化試驗線在西南交通大學」,2021/01/13,以下網址可供閱覽 : https://news.eol.cn/dongtai/202101/t20210113_2069088.shtml,最後瀏覽日:2021/06/06。
    [23] 香港01新聞,「西南交大:全球首條高溫超導磁浮工程化樣車啟用 時速逾600公里」,2021/01/13,以下網址可供閱覽: https://reurl.cc/1Yo3DD,最後瀏覽日: 2021/06/06。
    [24] A.B. Abrahamsen, N. Magnusson, B. B. Jensen, et al. "Large Superconducting Wind Turbine Generators," Energy Procedia, Vol.24, pp.60–67, 2012.
    [25] EneryTrend,「大幅減少稀土使用量,更輕便與高效的超導風機出爐」,2018/12/04,以下網址可供閱覽: https://www.energytrend.com.tw/news/20181204-14312916.html,最後瀏覽日: 2021/06/06。
    [26] T. Nishio, S. Ito, H. Hashizume, "Heating and Loading Process Improvement for Indium Inserted Mechanical Lap Joint of REBCO Tapes," IEEE Transactions on Applied Superconductivity, Vol.27, No.4, pp.1–5, 2017.
    [27] T. Nishio, S. Ito, N. Yusa, et al. "Reducing Joint Resistance by Heat Treatment During Fabrication of a Mechanical Joint of High-Temperature Superconducting Conductors," IEEE Transactions on Applied Superconductivity, Vol.26, No.4, pp.1–5, 2016.
    [28] D. Huang, H. Gu, Z. Dong, et al. "Study on Electromechanical Properties of Solder Jointed YBCO Coated Conductors With Etched Copper Stabilizer Under Axial Tension," IEEE Transactions on Applied Superconductivity, Vol.30, No.1, pp.1–6, 2020.
    [29] N. N. Balashov, P. N. Degtyarenko, S. S. Ivanov, et al. "Low-Resistance Soldered Joints of Commercial 2G HTS Wire Prepared at Various Values of Applied Pressure," IEEE Transactions on Applied Superconductivity, Vol.28, No.4, pp.1–4, 2018.
    [30] J. Zheng, H. Ma, R. He, et al. "Low-Resistance and Strong-Adhesion Soldering of Second-Generation High-Temperature Superconductor Tapes Within a Short Time," IEEE Transactions on Applied Superconductivity, Vol.27, No.5, pp.1–6, 2017.
    [31] T. Nakanishi, T. Machi, T. Izumi, et al. "Jointing of coated conductors by using nano-particle metal pastes," Physics Procedia, Vol.81, pp.105–108, 2016.
    [32] S. Ito, H. T. Fujii, R. Hayasaka, et al. "Comparison of Heat Assisted Lap Joints of High-Temperature Superconducting Tapes With Inserted Indium Foils," IEEE Transactions on Applied Superconductivity, Vol.29, No.5, pp.1–5, 2019.
    [33] Y. Tsui, E. Surrey, D. Hampshire, "Soldered joints—an essential component of demountable high temperature superconducting fusion magnets," Supercond. Sci. Technol., Vol 29, No.7, 2016.
    [34] E. Michalcová, F. Gömöry, L. Frolek, et al. "Joining of CC Tapes With Lead-Free Solders," IEEE Transactions on Applied Superconductivity, Vol. 26, No. 3, pp.1–4, 2016.
    [35] J. Kato, N. Sakai, S. Miyata, et al. "Optimization of the diffusion joint process for the Ag layers of YBCO coated conductors," Physica C, Vol.463, pp.747–750, 2007.
    [36] J. Kato, N. Sakai, S. Miyata, et al. "Diffusion joint using silver layer of YBCO coated conductors for applications," Physica C, Vol.468, pp.1571–1574, 2008.
    [37] J.W. Lee, S. M. Choi, J. H. Song, et al. "Stability phase diagram of GdBa2Cu3O7− δ in low oxygen pressures," Journal of Alloys and Compounds, Vol.602, pp.78–86, 2014.
    [38] Y. Park, M. Lee, H. Ann, et al. "A superconducting joint for GdBa2Cu3O7− δ-coated conductors" NPG Asia Mater. 6 e98
    [39] X. Jin, Y. Yanagisawa, H. Maeda, et al. "Development of a superconducting joint between a GdBa2Cu3O7-δ coated conductor and YBa2Cu3O7−δ bulk: towards a superconducting joint between RE(Rare Earth)Ba2Cu3O7−δ coated conductors," Supercond. Sci. Technol., Vol.28, No.7, 2015.
    [40] X. Jin, Y. Yanagisawa, H. Maeda, "Measurement of persistent current in a Gd123 coil with a superconducting joint fabricated by the CJMB method," IEEE Transactions on Applied Superconductivity, Vol.28, No.3, pp.1–4, 2018.
    [41] K. Ohki, T. Nagaishi, T. Kato, et al. "Fabrication, microstructure and persistent current measurement of an intermediate grown superconducting (iGS) joint between REBCO coated conductors," Supercond. Sci. Technol., Vol.30, No.11, 2017.
    [42] G.D. Brittles, T. Mousavi, C. R. M. Grovenor, et al. "Persistent current joints between technological superconductors," Supercond. Sci. Technol., Vol.28, No.9, 2015.
    [43] G. Celentano, A. Augieri, A. Mauretti, et al. "Electrical and Mechanical Characterization of Coated Conductors Lap Joints," IEEE Transactions on Applied Superconductivity, Vol.20, No.3, pp.1549–1552, 2010.
    [44] H.S. Shin, A. Nisay, M. Dedicatoria, et al. "Establishment of an easy Ic measurement method of HTS superconducting tapes using clipped voltage taps," Progress in Superconductivity and Cryogenics, Vol.16, No.2, pp.29–32, 2014.
    [45] 歐陽天(2018)。新穎二代高溫超導線材接合技術研究與性質量測。國立成功大學材料所碩士論文,台南市。
    [46] B. Nadezda, A. Augieri, G. Celentano, et al. "Investigation of ReBCO Conductor Tape Joints for Superconducting Applications," IEEE Transactions on Applied Superconductivity, Vol.25, No.3, pp.1–5, 2015.
    [47] M. Pekarčíková, M. Skarba, P. Konopka, et al. "Investigation of defects in functional layer of high temperature superconducting tapes," Physica C, Vol.497, pp. 24–29, 2014.
    [48] J. Lu, R. Goddard, K. Han, et al. "Contact resistance between two REBCO tapes under load and load cycles," Supercond. Sci. Technol., Vol.30, No.4, 2017.
    [49] Y. Mei, L. Li, X. Li, et al. "Electric-current-assisted sintering of nanosilver paste for copper bonding," Journal of Materials Science: Materials in Electronics, Vol.28, No.12, pp.9155–9166, 2017.

    無法下載圖示 校內:2026-09-13公開
    校外:2026-09-13公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE