簡易檢索 / 詳目顯示

研究生: 黎仁滄
Li, Jen-Tsan
論文名稱: 格林方程式及其法向導數在自由液面、波動與物體間相互干擾問題的應用
On the singularities of Grenn's formula and its normal derivative, with an application to surface-wave-body interaction problems
指導教授: 楊世安
Yang, Shih-An
學位類別: 碩士
Master
系所名稱: 工學院 - 造船及船舶機械工程學系
Department of Systems and Naval Mechatronic Engineering
論文出版年: 2003
畢業學年度: 91
語文別: 中文
論文頁數: 54
中文關鍵詞: 奇異點強奇異點積分方程
外文關鍵詞: hypersingularity, singularity, irregular frequencv, surface-wave-body interaction, integral equation
相關次數: 點閱:125下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文用非奇異之形式展現外部問題的格林方程及其法向導數在三維之Laplace式上。對於所描述之物理公式,採用直接積分的方式去求解,因此一般處理物理問題之邊界元素近似法(此時需使每個切割元素的奇異點規律化)將不採用。對於弱奇異點我們同時採用高斯流量(Guass Flux)定理和均勢體(associated equipotential)來處理;對於強奇異點則以共同內部問題之邊界公式處理之(弱、強奇異點於內容中有定義)。
    修正後之積分方程將被假設在無限領域之球體上先作測試,附帶全軟(Dirichlet)或全硬(Neumann)之邊界條件。在自由液面、波動和物體間之相互干擾問題上,使用邊界積分公式須在某些離散之頻率下作分解,且用標準積分式及其法向導數之線性組成來去除不規則之頻率。計算之結果將列成附加質量、阻尼係數、激盪力分別和波數所呈現之關係,並與其他可行之近似處理法作相關結果之比較。

    The paper presents the non-singular forms of Green's formula and its normal derivative of exterior problems for three-dimensional Laplace's equation. The main advantage of these modified formulations is that they're amenable to solution by directly using quadrature formulas. Thus, the conventional boundary element approximation, which locally regularizes the singularities in each element, is not required. The weak singularities are treated by both the Gauss flux theorem and the property of the associated equipotential body. The hypersingularities are treated by further using the boundary formula for the associated interior problem. The efficacy of the modified formulations is examined by a sphere, in an infinite domain , subject to Neumann and Dirichlet conditions , respectively.
    The modified integral formulations are further applied to a practical problem, ie. surface-wave -body interaction. Using the conventional boundary integral equation formulation is known to break down at certain discrete frequencies for such a problem.Removing the ‘irregular’ frequencies is performed by linearly combiming the standard integral equation with its normal derivative. Computations are presented of the add-mass and damping coefficients and wave exciting force on a floating hemisphere .Comparing the numerical results with that by other approaches demonstrates the effectiveness of the method.

    SUMMARY Ⅰ 摘要 Ⅲ 誌謝 Ⅳ 目錄 Ⅴ 圖目錄 Ⅶ 符號說明 Ⅷ 第一章 緒論 1 1-1研究動機 1 1-2文獻回顧 2 1-3大綱 3 第二章 去除格林方程式之奇異性 4 2-1基本假設及數學模式 4 2-2格林方程式奇異性之去除 5 2-3格林方程式無奇異性之證明 8 第三章 去除格林方程式法向導數之奇異性 11 3-1格林方程式法向導數之存在條件 11 3-2利用內部問題來去除格林方程式法向導數之奇異性 14 第四章 數值測試 17 4-1各類數值法之回顧 17 4-2數值方法 18 4-3實體計算 20 第五章 自由液面、波動和物體間相互干擾之問題 23 5-1簡介 23 5-2問題之數學模式 25 5-3數值結果 31 第六章 結論 32 參考文獻 33

    參考文獻
    [1].Fredholm I. Sur une classe d'equations fonctionelles.Acta Mathematica 1903;27:365-390
    [2].Kellogg OD.Foundations of potential theory. Springer: Berlin﹐1929.
    [3].Mikhlin SG.Multidimensional singular integrals and integral equations. Pergamon Press:London﹐1965.
    [4].Pogorzelski W. Integral equations and their applications. Pergamon Press: 0xford.1966.
    [5].Günter NM. Potential theory and its applications to basic problems of mathematical pphysics.Ungar:New York﹐1967.
    [6].Colton D,Kress R.Integral equation methods in scattering theory. Wiley:New York﹐1983.
    [7].Pozrikidis C.Boundary integral and singularity methods for linearized viscous flow.Cambridge University Press:Cambridge﹐1992.
    [8].Huang Q﹐Cruse TA.Some note on singular integral techniques in boundary element analysis.International Journal for Numerical Method in Engineering 1993;36:2643-2659
    [9].Landweber L﹐Macagno M.Irrotational flow about ship forms.IIHR Report No.123 ﹐Iowa Institute of Hydraulic Research﹐University of Iowa﹐Iowa City ﹐Iowa ﹐1969.
    [10].Hwang WS. A boundary integral method for acoustic radiation and scattering.Journal of the Acoustical Society of America 1997;101:3330-3335.
    [11].Yang SA. Acoustic scattering by a hard or soft body across a wide frequency range by the Helmholtz integral equation method. Journal of the Acoustical Society of America 1997;102:2511-2520.
    [12].Berbbia CA﹐Dominguez J. Boundary Element:An introductory Course .Computational Mechanics Publications:Southampton﹐1989.
    [13].Becker AA.The boundary element method in engineering:A complete course.McGraw-Hill:New York﹐1992.
    [14].Chien CC, Rajiyah H,Atluri SN.An effective method for solving the hypersingular integral equations in 3-D acoustics.Journal of the Acoustical Society of America.1990;88:918-937.
    [15].Rizzo FJ﹐Shippy DJ﹐Rezayat M. A boundary integral equation method for radiation and scattering of elastic waves in three dimensions. International Journal for Numerical Method in Engineering 1985﹔21:115-129.
    [16].Krishnasamy G﹐Rudolphi TJ﹐Schmerr LW﹐Rizzo FJ. Hypersingular integral formulas and wave scattering with the boundary element method.Proceedings Ist Japan-US Symposium on Boundary Elements﹐Tokyo﹐1988.
    [17].Ingber MS﹐Mitra AK.The evaluation of the normal derivative along the boundary in the direct boundary element method.Applied Mathematical Modelling 1989;13:32-40.
    [18].Guiggiani M﹐Krishnasamy G﹐Rudolphi TJ﹐Rizzo FJ.A general algorithm for the numerical solution of hypersingular boundary integral equations.ASME Journal of Applied mechanics 1992;59:604-614.
    [19]. Guiggiani M.Compution principal value integrals in 3D BEM for time-harmonic elastodynamics-A direct approach. Communications in Applied Numerical Methods 1992;8:141-149.
    [20].Guiggiani M.Hypersingular formulation for boundary stress evaluation. Engineering Analysis Boundary Elements﹐Special Issue on Integration Techniques 1994;55:169-179.
    [21].Tanaka M, Sladek V,Sladek J .Regularization techniques applied to boundary element methods. Applied Mechanics Reviews.1994;47:457-499.
    [22].Sladek V,Sladek J(eds).Singular integrals in boundary elements methods.Computational Mechanics Publications:Southampton﹐1998.
    [23].Golberg M(eds). Boundary integral methods:Numerical and
    mathematical aspects.Computational Mechanics Publications
    :Southampton﹐1999.
    [24].Jaswon MA﹐Symm GT.Integral equation method in potential theory and elastostatics.Academic Press:London﹐1997.
    [25].Golberg MA﹐Chen CS.Discrete projection methods for integral equations . Computational Mechanics Publications:
    Southampton﹐1997;17.
    [26].Stakgold I.Boundary value problems of mathematical physics ﹐vol .1. Macmillan : New York﹐184.
    [27].Guiggiani M.Continuity requirements for density functions in boundary integral equations are not strictly necessary.Proceedings of IABEM ‘95’ ﹐Hawaii﹐1995.In Computational Mechanics‘95’﹐Atluri SN﹐Yagawa G﹐Gruse TA(eds).Springer:Berlin﹐1995;2776-2781.
    [28].Hadamard J.Lectures on Cauchy’s problem in linear partial differential equations.Yale University Press:New Haven﹐1923.
    [29].Mangler KW.Improper integrals in theoretical aerodynamics.Technical Report CP 94﹐Aeronautical Research Council﹐London﹐1951.
    [30].Kutt HR.The numerical evaluation of principal value integrals by finite-part integration.Numerical Mathematics1975;24:205-210.
    [31].Paget DF.The numerical evaluation Hadamard finite-part integrals.Numerical Mathematics 1981;36:447-453.
    [32].Kaya AC﹐Erdogan F.On the solution of integral equations with strongly singular kernels.Quarterly of Applied Mathematics 1987;45:105-122.
    [33].Chen G﹐Zhou J.Boundary element methods.Academic Press: New York﹐1992.
    [34].Piessens R﹐Branders M.Numerical solution of integral equations of mathematical physics﹐using Chebyshev polynomials. Journal of Computational Physics 1976;21:178-196.
    [35].Atkinson KE.A survey of Numerical methods for the solution of Fredholm integral equations of the second kind.SIAM:Philadelphia﹐1976.
    [36].Chandler GA.Superconvergence of numerical solution to second kind integral equations.Ph.D.Thesis﹐Australian National University ﹐Canberra﹐1979.
    [37].Delves LM,Mohamed JL.Computational methods for integral equations.Cambridge University Press:Cambridge,1985.
    [38].Atkinson KE.The Numerical solution of integral equations of the second kind.Cambridge University Press:Cambridge,1997.
    [39].Landweber L.An iteration formula for Fredholm integral equations of the first kind.America Journal of Mathematics 1951;73:615-624.
    [40].Strand ON.Theory and methods related to the singular function expansion and Landweber’s iteration for integral equations of the first kind.SIAM Journal on Numerical Analysis 1974;11:798-825.
    [41].Richter GR. Numerical solution of integral equations of of the first kind with nonsmooth kernels. Journal on Numerical Analysis 1978;15:511-522.
    [42].Atkinson KE.A discrete Galerkin method for first kind integral equations with a logarithmic kernel.Journal of Integral Equations Applications 1988;1:343-363.
    [43].Yan Y﹐Sloan IH.On integral equations of the first kind with a logarithmic kernels. Journal of Integral Equations Applications 1988;1:549-579.
    [44].Graham IG﹐Atkinson KE.On the sloan iteration applied to integral equations of the first kind.Report No.4﹐Department of Mathematics﹐University of Iowa﹐Iowa City﹐IA﹐1990.
    [45].Lamb H.Hydrodynamics.Dover:New York﹐1932.
    [46].John F.On the motion of floating bodies Ⅱ﹐simple harmonic motion. Communication in Pure and Applied Mathematics 1950;3:45-101.
    [47].Copley LG.Fundamental results concerning integral representations in acoustic radiation.Journal of the Acoustical Society of America. 44:28-32.
    [48].Benthien W﹐Schenck A.Nonexistence and nonuniqueness problems associated with integral equation methods in acoustics. Computers and Structures 1997;65(3):295-305.
    [49].Lee CE﹐Sclavounos PD.Removing the irregular frequencies form integral equations in wave-body interaction. Journal of Fluid Mechanics 1989;207:393-418.
    [50].Burton AJ﹐Miller GF.The application of integral equation methods to the numerical solution of some exterior boundary value problems.Philosophical Transactions of the Royal Society of London﹐Series A 1963;:201-210.
    [51].Lau SM﹐Hearn GE.Suppression of integral frequency effects in fluid -structure interaction problems using a combined boundary integral equation method.International Journal for Numerical Methods in Fluids 1989;9:763-782.
    [52].Schenck HA.Improved integral formulation for acoustics radiation problems. Journal of the Acoustics Society of America 1968;44:41-58.
    [53].Ohmatsu S.On the irregular frequencies in the theory of oscillating bodies in a free surface. Papers Ship Res.Inst.Japan.No.48﹐1975.
    [54].Donati E.A study of the theoretical and implementation aspects of response prediction methods for rigid floating bodies at sea .Ph.D. Thesis﹐University of Newcastle uponTyne,Department of Naval Architecture and Shipbuiding,1986.
    [55].Lee CE﹐Newman JN﹐Zhu X.An extened boundary integral equation method for the removal of irregular frequency effects. International Journal for Numerical Methods in Fluids 1996;23:637-660.
    [56].Malenica S﹐Chen XB.On the irregular frequencies appearing in wave diffraction-radiation solutions.International Journal of Offshore and Polar Engineering 1988;8(2):110-114.
    [57].Wehausen JV﹐Laitone EV.Surface waves.In Handbuch de Physik.Springer:Berlin﹐1960;446-778.
    [58].Hearn GE.Alternative methods of evaluating Green’s function in three- dimensional ship-wave problem. Journal of Ship Research 1977;21(2):89-93.
    [59].Telste JG,Noblesse F.Numerical evaluation of the Green’s function of wave-wave radiation and diffraction.Journal of Ship Research 1986.30(2):69-84.
    [60].Humle A.The wave forces acting on a floating hemisphere undergoing forced periodic oscillations.Journal of Fluid Mechanics 1982;121:443-463.

    下載圖示 校內:2004-07-09公開
    校外:2004-07-09公開
    QR CODE