| 研究生: |
黃瓊慧 Huang, Chiung-hui |
|---|---|
| 論文名稱: |
以電鍍法於BMP-NTf2室溫離子液體中製備錳薄膜電極以及其氧化物之擬電容行為研究 The Pseudo-capacitive Properties of Manganese Oxide Prepared by Anodizing Manganese Thin Film Electro-deposited in Room Temperature BMP-NTf2 Ionic Liquid |
| 指導教授: |
蔡文達
Tsai, Wen-ta |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 116 |
| 中文關鍵詞: | 室溫離子液體 、超高電容器 、氧化錳 、錳薄膜 、BMP-NTf2 、電鍍 |
| 外文關鍵詞: | ionic liquid, BMP-NTf2, manganese oxide, Mn thin film, electro-deposition |
| 相關次數: | 點閱:99 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究嘗試於BMP-NTf2室溫離子液體中利用電鍍法製備錳金屬薄膜電極,並探討不同還原電位以及鍍液溫度對於所製備錳薄膜電極電化學性質之影響。另外,再探討經不同電化學方式氧化後的氧化錳電極之材料與擬電容特性。
由於BMP-NTf2室溫離子液體有很寬廣的電位穩定範圍(大於4.5 V)並足以涵蓋Mn/Mn+2的電化學反應平衡電位,因此可利用其作為溶劑以進行金屬錳的電鍍。實驗結果顯示,在含兩價錳的離子液體中可將錳金屬薄膜析鍍於鎳箔基材上,其電流效率接近100%。改變還原電位(-1.8、-2.0、-2.2 VFc/Fc+)和鍍液溫度(50℃、70℃、90℃、110℃),並不影響電鍍的電流效率。由表面形貌觀察可知,以較低的還原電位(-1.8 VFc/Fc+)與電鍍溫度(50℃)所製備之錳薄膜電極表面最為平整且均勻。由低掠角X光繞射圖譜得知,提高鍍液溫度並不會改變所製備之錳薄膜結晶性,且皆以非晶質錳呈現。
於50℃之BMP-NTf2室溫離子液體中,以-1.8 VFc/Fc+所製備之錳薄膜電極分別再以三種不同電化學方式(定電位、定電流,以及循環伏安法)氧化。以掃瞄式電子顯微鏡觀察定電位氧化之氧化錳電極,其表面形貌呈現團聚的表徵;以定電流法之氧化錳電極表面呈現團聚且有些許絲狀物的形貌;而循環伏安氧化之氧化錳電極表面為纖維狀的層狀結構。由低掠角X光繞射圖譜得知經三種不同電化學方式氧化之氧化錳皆為非晶質的。以X光光電子能譜儀分析結果可知,定電位氧化之氧化錳電極為含較多四價錳的氧化物且含水合物較少;循環伏安氧化之氧化錳電極為含較多三價錳的氧化物且含水合物較多;而定電流氧化之氧化錳電極則介於兩者之間。以循環伏安法量測電化學性質,結果顯示當還原電位為-1.8 VFc/Fc+且鍍液溫度為50℃時,所製備之錳薄膜電極經過循環伏安氧化後,在電位掃瞄速率為5 mV/sec的條件下可得到最高的比電容值402 F/g,且在500次循環伏安測試之後的電容衰退率約為6 %,顯示其應用在超高電容器中的發展潛力。
This study attempted to prepare Metallic Mn thin film electrodes by electro-deposition in BMP-NTf2 ionic liquid. Effects of reducing potential and temperature in electrochemical properties of the Mn thin film electrodes were investigated. In addition, the material characteristics and pseudo-capacitive properties of manganese oxide after different electrochemical oxidation were investigated, too.
The BMP-NTf2 ionic liquid was found to have a very wide potential window of 4.5 V, therefore, was capable of being a novel medium for electro-depositing metallic Mn thin film. By using an electrochemical process, block manganese counter electrode was dissolved in the ionic liquid to generate divalent Mn, which was subsequently cathodically deposited on the nickel substrate. The current efficiency of this process was confirmed to be extremely high (close to 100%). When changing reducing potential (-1.8、-2.0、-2.2 VFc/Fc+) and temperature (50℃、70℃、90℃、110℃), the current efficiency of deposited process was the same. The surface morphologies of Mn thin films indicated that the films were getting smoother when decreasing reducing potential and temperature. Glancing angle X-ray diffraction patterns indicated that metallic Mn thin films deposited at different temperatures were all amorphous.
The Mn thin film electrodes prepared at -1.8 VFc/Fc+ in 50℃ BMP-NTf2 ionic liquid oxidized by three different electrochemical methods (Potentiostatic, galvanostatic, and cyclic voltammetric methods). The surface morphology of the oxides prepared by different methods was observed by SEM. It showed that the particles of MnO-P and MnO-CV electrodes were lumping together and fully covered by a fiber-like layer, respectively. MnO-G electrodes were lumping together and partially coverd by fiber-like layer. Glancing angle X-ray diffraction pattern indicated that all oxides are amorphous. Moreover, their chemical states were analyzed with an X-ray photoelectron spectroscope. The analytic results indicated that MnO-P electrode was composed of more tetravalent and less hydrous Manganese oxides. Therefore, MnO-CV electrode was composed of more trivalent and more hydrous Manganese oxides. XPS analytic results of MnO-G electrides were between MnO-P and MnO-CV electrodes. Mn thin film deposited at -1.8 VFc/Fc+ in 50℃ BMP-NTf2 ionic liquid and then anodized by the cyclic voltammetric method showed a promising specific capacitance of 402 F/g (measured in 0.1 M Na2SO4 solution at a potential scan rate of 5 mV/s).
1. B. E. Conway, “Electrochemical Supercapacitors–Scientific Fundamentals and Technology Applications”, Kluwer Academic /Plenum, New York (1999)
2. B. E. Conway, “Transition from “supercapacitor” to “battery” Behavior in Electrochemical Energy Storage”, J. Electrochem. Soc., 138 (1991) 1539
3. S. Sarangapani, B. V. Tilak, C. P. Chen, “Materials for electrochemical capacitors”, J. Electrochem. Soc., 143 (1996) 3791
4. J. P. Zheng, T. R. Jow, “A New Charge Storage Mechanism for Electrochemical capacitors”, J. Electrochem. Soc., 142 (1995) L6
5. J. P. Zheng, P. J. Cygan, T. R. Jow, “Hydrous Ruthenium Oxide as an Electrode Material for Electrochemical capacitors”, J. Electrochem. Soc., 142 (1995) 2699
6. H. Y. Lee, V. Manivannan, J. B. Goodenough, “Electrochemical capacitors with KCl electrolyte”, Comptes Rendus Chimie, 2 (1999) 565
7. H. Y. Lee, J. B. Goodenough, “Supercapacitor Behavior with KCl electrolyte”, J. Solid State Chem., 144 (1999) 220
8. Y. U. Jeong, A. Manthiram, “Nanocrystalline Manganese Oxides Electrochemical Capacitors with Neutral Electrolytes”, J. Electrochem. Soc., 149 (2002) A1419
9. R. N. Reddy, R. G. Reddy, “Synthesis and electrochemical characterization of amorphous MnO2 electrochemical capacitor electrode material”, J. Power Sources, 132 (2004) 315
10. S. C. Pang, M. A. Anderson, T. W. Chapman, “Novel Electrode Materials for Thin-Film Ultracapacitors: Comparison of Electrochemical properties of So-Gel-Derived and Electrodeposited Manganese Dioxide”, J. Electrochem. Soc., 147 (2000) 444
11. J. N. Broughton, M. J. Brett, “Electrochemical capacitance in Manganese Thin Films with Chevron Microstructure”, Electrochem. Solid State Letters, 5 (2002) A279
12. C. C. Hu, T. W. Tsou, “Ideal capacitive behavior of hydrous manganese oxide prepared by anodic deposition”, Electrochemistry Communications, 4 (2002) 105
13. J. K. Chang, W. T. Tsai, “Material Characterization and Electrochemical Performance of Hydrous Manganese Oxide Electrodes for Use in Electrochemical Pseudocapacitors”, J. Electrochem. Soc., 150 (2003) A1333
14. C. H. Liang, C. S. Hwang, “Optimization of manganese oxide electrode synthesis by experimental design”, Annual Meeting of The Ceramic Society of Japan 2006, (March, 14-16, 2006) Tokyo University, Tokyo, Japan.
15. C. S. Hwang, C. H. Liang, W. T. Tsai, Masahiro Yoshimura,” Synthesis and Characteristics of Manganese Oxide Film by Hydrothermal Electrochemical Process”, ISHR&ICSTR2006, P-121, (Aug, 5-8, 2006) Sendai, Japan.
16. J. N. Broughton, M. J. Brett, “Investigation of thin sputtered Mn films for electrochemical capacitors”, Electrochim. Acta, 49 (2004) 4439
17. S. Zein El Abedin, N. Borissenko, F. Endres, “Electrodeposition of nanoscale silicon in a room temperature ionic liquid”, Electrochemistry Communications, 6 (2004) 510
18. S. Zein El Abedin, U. Welz-Biermann, F. Endres, “A study on the electrodeposition of tantalum on NiTi alloy in an ionic liquid and corrosion behaviour of the coated alloy”, Electrochemistry Communications, 7 (2005) 941
19. S. Zein El Abedin, E. M. Moustafa, R. Hempelmann, H. Natter, F. Endres, “Additive free electrodeposition of nanocrystalline aluminium in a water and air stable ionic liquid”, Electrochemistry Communications, 7 (2005) 1111
20. A. Burke, “Ultracapacitors: why, how, and where is the technology”, J. Power Sources, 91 (2000) 37
21. R. A. Huggins, “Supercapacitors and Electrochemical Pulse Sources”, Solid State Ionics, 134 (2000) 179
22. J. P. Zheng, J. Huang, T. R. Jow, “The Limitations of Energy Ddensity for Electrochemical Capacitors”, J. Electrochem. Soc., 144 (1997) 2026
23. R. Kotz, M. Carlen, “Principles and Applications of Electrochemical Capacitors”, Electrochim. Acta, 45 (2000) 2483
24. G. L. Bullaed, H. B. Sierra-Alcazar, H. L. Lee, J. L. Morris, “Operating Principles of The Ultracapacitor”, IEEE Trans. Magnet., 25 (1989) 102
25. S. Had i-Jordanov, H. Angerstein-Kozlowska, M. Vukovi , and B. E. Conway, “Reversibility and Growth Behavior of Surface Oxide Films at Ruthenium Electrodes” , J. Electrochem. Soc., 125 (1978) 1471
26. Q. L. Fang, D. A. Evans, S. L. Roberson, J. P. Zheng, “Ruthenium Oxide Film Electrodes Prepared at Low Temperatures for Electrochemical Capacitors” , J. Electrochem. Soc., 148 (2001) A833
27. J. P. Zheng, T. R. Jow, “High energy and high power density electrochemical capacitors”, J. Power Sources, 62 (1996) 155
28. R. Fu, Z. Ma, J. P. Zheng, “Proton NMR and Dynamic Studies of Hydrous Ruthenium oxide”, J. Phys. Chem. B, 106 (2002) 3592
29. K. K. Liu, M. A. Anderson, “Porous Nickel Oxide/Nikel Films for Electrochemical Capacitors”, J. Electrochem. Soc., 143 (1996) 124
30. V. Srinivasan, J. W. Weidner, “An Electrochemical Route for Making Porous Nickel Oxide Electrochemical Capacitors”, J. Electrochem. Soc., 144 (1997) L210
31. C. Lin, J. A. Ritter, B. N. Popov, “Characterization of Sol-Gel-Derived Cobalt Oxide Xerogels as Electrochemical Capacitors”, J. Electrochem. Soc., 145 (1998) 4097
32. T. C. Liu, W. G. Pell, B. E. Conway, “Stages in the development of thick cobalt oxide films exhibiting reversible redox behavior and pseudocapacitance”, Electrochim. Acta, 44 (1999) 2829
33. H. Y. Lee, J. B. Goodenough, “Ideal Supercapacitor Behavior of Amorphous V2O5.nH2O in Potassium Chloride (KCl) Aqueous Slution”, J. solid state chem., 148 (1999) 81
34. V. Srinivasan, J. W. Weidner, “Studies on The Capacitance of Nickel Oxides Films: Effect of Heating Temperature and Electrolyte Concentration”, J. Electrochem. Soc., 147 (2000) 880
35. Y. U. Jeong, A. Manthiram, “Amorphous Ruthenium-Chromium Oxides for Electrochemical Capacitors”, Electrochemical and Solid-State Letters, 3 (2000) 205
36. H. K. Kim, T. Y. Seong, J. H. Lim, W. I. Cho, Y. S. Yoon, “Electrochemical and Structural Properties of Radio Frequency Sputtered Cobalt Oxide Electrodes for Thin-Film Supercapacitors”, Journal of Power Sources, 102 (2001) 167
37. K. W. Nam, K. B. Kim, “A Study of The Preparation of NiOx Electrode via Electrochemical Route for Supercapacitor Applications and Their Charge Storage Mechanism”, J. Electrochem. Soc., 149 (2002) A346
38. K. W. Nam, W. S. Yoon, K. B. Kim, “X-ray absorption spectroscopy studies of nickel oxide Tthin film electrodes for supercapacitors”, Electrochim. Acta, 47 (2002) 3201
39. W. Sugimoto, T. Shibutani, Y. Murakami. Y. Takasu, “Charge Storage Capabilities of Rutile-Type RuO2-VO2 Solid Solution for electrochemical Spercapacitors”, Electrochemical and Solid-State Letters, 5 (2002) A170
40. C. C. Hu, C. Y. Cheng, “Ideally Pseudocapacitive Behavior of Amorphous Hydrous Cobalt-Nickel Oxide Prepared by Anodic Deposition”, Electrochemical and Solid-State Letters, 5 (2002) A43
41. A. Bai, C. C. Hu, “Effects of electroplating variables on the composition and morphology of nickel-cobalt deposits plated through means of cyclic voltammetry”, Electrochim. Acta, 47 (2002) 3447
42. N. L. Wu, “Nanocrystalline oxide supercapacitors”, Mater. chem. phys., 75 (2002) 6
43. N. L. Wu, S. Y. Wang, C. Y. Han, D. S. Wu, L. R. Shiue, “Electrochemical Capacitor of Magnetite in Aqueous Electrolytes”, Journal of Power Sources, 113 (2003) 173
44. S. Y. Wang, N. L. Wu, “Operating Characteristics of Aqueous Magnetite Electrochemical Capacitors”, J. appl. electrochem., 33 (2003) 345
45. K. R. Prasad, N. Miura, “Electrochemical Synthesis and Characterzation of Nanostructured Tin Oxide for Electrochemical Redox Supercapacitors”, Electrochem. Comm., 6 (2004) 849
46. K. R. Peasad, N. Miura, “Electrochemically Deposited Nanowhiskers of Nickel Oxide as a High-Power Pseudocapacitive Eletrode”, Appl. phys. lett., 85 (2004) 4199
47. J. Jiang, A. Kucernak, “Electrochemical Supercapacitor Material Baded on Manganese Oxide: Preparation and Charaterization”, Electrochim. Acta, 47 (2002) 2381
48. X. M. Liu, X. G. Zhang, “NiO-based composite eletrode with RuO2 for electrochemical capacitors”, Electrochim. Acta, 49 (2004) 229
49. H. Kim, Branko N. Popov, “Synthesis and Characterization of MnO2-Based Mixed Oxides as Supercapacitors”, J. Electrochem. Soc., 150 (2003) D56
50. H. Y. Lee, S. W. Kim, H. Y. Lee, “Expansion of Active Site Area and Improvement of Kinetic Reversibility in Electrochemical Pseudocapacitor Electrode”, Electrochemical and Solid-State Letters, 4 (2001) A19
51. C. Tsang, J. Kim, A. Manthiram, “Sunthesis of Manganese Oxides by Reduction of KMnO4 with KBH4 in aqueous Solutions”, J. solid state chem., 137 (1998) 28
52. R. N. Reddy, R. G. Reddy, “Sol-gel MnO2 as an electrode material for electrochemical capacitors”, Journal of Power Sources, 124 (2003) 330
53. S. C. Pang, M. A. Anderson, “Novel electrode materials for electrochemical capacitors: Part II. Material characterization of sol-gel-derived and electrodeposited manganese dioxide thin films”, J. mater. res., 15 (2000) 2096
54. S. F. Chin, S. C. Pang, M. A. Anderson, “Material and Electrochemical Characterizarion of Tetrapropylammonium Manganese Oxide Thin Films as Novel Electrode Materials for Electrochemical Capacitors”, J. Electrochem. Soc., 149 (2002) A379
55. B. Djurfors, J. N. Broughton, M. J. Brett, D. G. Ivey, “Microstructural characterization of porous manganese thin films for electrochemical supercapacitor applications”, J. Mater. Sci., 38 (2003) 4817
56. R. Greef, R. Peat, L. M. Peter, D. Pletcher, J. Robinson, “Instrumental Methods in Electrochemistry”, John Wiley, New York (2001)
57. D. Pletcher, “A First Course in Electrode Process”, The Electrochemical Con sultancy, England (1991)
58. K. Trejo, R. Ortega B., Y. Meas V., P. Ozil, E. Chainet, B. Nguyen, “Nucleation and Growth of Zinc from Chloride Concentrated Solutions”, J. Electrochem. Soc., 145 (1998) 4090
59. L. Legrand, A. Tranchant, R. Messina, “Electrodeposition Studies of Aluminum on Tungsten Electrode from DMSO2 Electrolytes”, J. Electrochem. Soc., 141 (1994) 378
60. C. L. Hussey, X.-H. Xu, “Electrodissolution and Electrodeposition of Lead in an Acidic Room Temperature Chloroaluminate Molten Salt”, J. Electrochem. Soc., 138 (1991) 1886
61. X.-H. Xu, C. L. Hussey, “ The Electrochemistry of Gold at Glassy Carbon in the Basic Aluminum Chloride-1-Methyl-3-ethylimidazolium Chloride Molten Salt”, J. Electrochem. Soc., 139 (1992) 3103
62. X.-H. Xu, C. L. Hussey, “The Electrochemistry of Mercury at Glassy Carbon and Tungsten Electrodes in the Aluminum Chloride-1-Methyl-3-Ethylimidazolium Chloride Molten Salt”, J. Electrochem. Soc., 140 (1993) 1226
63. J. S.-Y. Liu, I-W. Sun, “Electrochemical Study of the Properties of Indium in Room Temperature Chloroaluminate Molten Salts”, J. Electrochem. Soc., 144 (1997) 140
64. Y.-F. Lin, I-W. Sun, “Electrodeposition of Zinc from a Mixture of Zinc Chloride and Neutral Aluminum Chloride-1-Methyl-3-ethylimidazolium Chloride Molten Salt”, J. Electrochem. Soc., 146 (1999) 1054
65. A. J. Bard, L. R. Faulkner, “Electrochemical Method-Fundamentals and Applications”, John Wiley & Sons, New York (1980)
66. D.R. MacFarlane, P. Meakin, J. Sun, N. Amini, M. Forsyth, “Pyrrolidinium Imides: A New Family of Molten Salts and Conductive Plastic Crystal Phases”, J. Phys. Chem. B, 103 (1999) 4164
67. M. Chigane, M. Ishikawa, “Manganese Oxide Thin Films Preparation by Potentionstatic Electrolytes and Electrochromism”, J. Electrochem. Soc., 147 (2000) 2246
68. M. Chigane, M. Ishikawa, M. Izaki, “Preparation of Manganese Oxide Thin Films by Electrolysis/Chemical Deposition and Electrochromism”, J. Electrochem. Soc., 148 (2001) D96
69. M. Pourbaix, “Atlas of Electrochemical Equilibria in Aqueous Solutions”, National Association of Corrosion Engineers, Houston, Texas, USA (1996)
70. B. R. Strohmeier, D. M. Hercules, “ Surface spectroscopic characterization of manganese/aluminum oxide catalysts”, J. Phys. Chem., 88 (1984) 4922
71. T. R. Jow, J. P. Zheng, “Electrochemical Capacitors Using Hydrous Ruthenium Oxide and Hydrogen Inserted Ruthenium Oxide”, J. Electrochem. Soc., 145 (1998) 49
72. J. P. Zheng, T. R. Jow, Q. X. Jia, X. D. Wu, “Proton Insertion into Ruthenium Oxide Film Prepared by Pulsed Laser Deposition”, J. Electrochem. Soc., 143 (1996) 1068
73. J. K. Chang, Y. L. Chen, W. T. Tsai, “Effect of heat treatment on material characteristics and pseudo-capacitive properties of manganese oxide prepared by anodic deposition”, J. Power Sources, 135 (2004) 344