| 研究生: |
翁仲德 Wong, Jhong-De |
|---|---|
| 論文名稱: |
應用層級分析法於無塵室儲水槽抑菌回水模組化設計之研究:以面板產業為例 Applying AHP to the Modular Design of Sterilized Water Recycling Systems in Cleanroom Storage Tanks: A Case Study of the Panel Industry |
| 指導教授: |
謝孟達
Shieh, Meng-Dar |
| 學位類別: |
碩士 Master |
| 系所名稱: |
規劃與設計學院 - 工業設計學系 Department of Industrial Design |
| 論文出版年: | 2025 |
| 畢業學年度: | 113 |
| 語文別: | 中文 |
| 論文頁數: | 80 |
| 中文關鍵詞: | 無塵室 、臭氧抑菌 、層級分析法 、節水系統 、TFT-LCD製程優化 |
| 外文關鍵詞: | clean room, Ozone antibacterial, Analytical Hierarchy Process, water saving system, TFT-LCD process optimization |
| 相關次數: | 點閱:33 下載:10 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
台灣是世界中缺水的國家之一,源於不平均的降雨期、群山陡峭河流短促,造成了多數的雨水無法真正留下並利用。現如今國內科學園區中的TFT-LCD面板產業廠房設址多處,該產業製程需要在無塵室中進行,其所需的水、電資源需求量大,現今除少數幾座近幾年新建成廠房外,多數廠房在2000年代時已建成或是規劃完成。當時進駐的生產製程機型對於節水的議題尚未有成熟的配套措施,以至於大多數機台所使用的水資源,使用過一次即排放至廠務進行廢水處理。
逐漸成長的需求及製程工藝不斷進長,水資源需求上漲。由長遠來看,一昧的限制水資源使用量,會使高階的產品研發停滯、整體產能也會受限,因此對於水資源的使用需開源節流。本研究目的在於將TFT-LCD面板產業之中,透過臭氧抑菌的特性,進行節省水資源。使無塵室中水洗段製程用水方式,由一次性用水改為導流到儲水槽,將使用過的水,進行抑菌過濾至能夠再利用狀態。使其能夠數次回流至製程中再利用(回水),透過回水的機制進而降低整體製程水資源的使用量。
本研究主要先探討現有做法無法大規模平展原因,以層級分析法決策出在無塵室的使用情境中,進行臭氧的可變要素進行優先度排序。得出以無聲放電產生法及鼓泡溶解法為最優解,依此結果進行實機組裝,並將其於無塵室內儲水槽進行安裝改造,相較於原本的生產製程,水資源使用量由原本用量降為5/9倍的用量。經過上述驗證後將其抑菌機件模組化,進而平展至該部門13條水洗段產線。大規模平展後初略估算可使該部門一年節約少使用5.7萬噸水資源(44%使用量)、135萬元的用水費及汙水處理費(費用降低44%)。因延長保養週期等同於減少整年的保養次數,進而增加該部門一整年所生產投片量增加1%。最後期望本研究能夠有效解決至各種相關製程機型的問題,不只能提高該產業競爭力,更能緩解國內水資源困乏的問題。
Numerous TFT-LCD panel manufacturing plants are located within domestic science parks. The production processes in this industry must be carried out in cleanroom environments, which require large amounts of water and electricity. Most of these plants were established in the 2000s. At that time, the production equipment lacked mature water-saving measures, and water was discharged to the facility’s wastewater treatment system after a single use.
Simply imposing restrictions on water usage would hinder the development of advanced products and limit overall production capacity. This study aims to utilize the antibacterial properties of ozone to transform the cleanroom rinsing process from a single-use water system into one where used water is redirected to a storage tank, disinfected and filtered, making it reusable. This treated water can then be recirculated multiple times back into the production process (reclaimed water), thereby reducing the overall water consumption.
Using the Analytic Hierarchy Process (AHP), this study prioritizes the ozone-related variables under cleanroom conditions. The results identified silent discharge ozone generation and bubble dissolution as the optimal methods. Based on these findings, equipment was assembled and installed in the cleanroom’s water storage tanks. Compared to the original production process, water usage was reduced to 5/9 of the original volume. It is expected that this research can effectively address water usage challenges across various production equipment and help alleviate the country’s water scarcity issues.
1.Ahadi & Fakhrabadi & Pourshaghaghy & Kowsary(2023),Renewable Energy Volume 215, October 2023, 118944.
2.Akıncı & Özalp & Turgut(2013),Computers and Electronics in Agriculture Volume 97, September 2013, Pages 71-82.
3.Amiri & Wahid & Al-Buraiki & Al-Sharafi(2024),Renewable Energy Volume 236, December 2024, 121523.
4.ISO 14644-1:2015 Cleanrooms and associated controlled environments Part 1: Classification of air cleanliness by particle concentration Published (Edition 2, 2015).
5.Rubin, M. B.(2001). The history of ozone. The Schönbein period, 1839–1868. Bull. Hist. Chem, 26(1), 40-56.
6.Saaty, T. L.(1980).The analytic hierarchy process,Mcgraw Hill, New York.
7.Saaty, T. L, Vargas , L. G.(1982).The logic of priorities applications in business, energy, health, transportation. Kluwer-Nijhoff Publishing, Boston.
8.Saaty, T. L.(1994). How to Make a Decision: The Analytic Hierarchy Process. Interfaces, 24, 19-43. https://doi.org/10.1287/inte.24.6.19.
9.Wijayanto, S. (2023). Pemilihan Karyawan Terbaik Menggunakan Metode Analytical Hierarchy Process:(Studi kasus: Yayasan Tunas Permata Anak Bangsa). Jurnal Informatika Utama, 1(2), 25-31.
10.Standard, A. S.(2013). Standard Guide for Ultra Pure Water Used in the Electronics and Semiconductor Industries.(ASTM D5217-07). https://store.astm.org/d5127-12.html
11.Tam, M. C., & Tummala, V. R.(2001). An application of the AHP in vendor selection of a telecommunications system. Omega, 29(2), 171-182.
12.Whyte, W.(2024). Classification of air cleanliness by particle concentration according to ISO 14644-1. Clean Air and Containment Review, 51(2), 4-7. https://eprints.gla.ac.uk/326457/1/326457.pdf
13.王志堅、詹明錦(2015),ATP生物發光法的介紹與應用,雙北檢驗醫學雜誌,第二卷 第六期,P.5。
14.生翰國際有限公司(2013),臭氧的產生,取自http://senham.com.tw/tw_exhibitionnews_detail.asp?id=20131218008
15.自來水公司(2021),台灣自來水事業統計年報,取自https://www.water.gov.tw/ch/AnnualReport/Detail/54392?nodeId=4571
16.吳寶雅(2000),層級分析法在衛生掩埋場安全評估之應用,國立成功大學
17.周鑑恆、黃俊夫、曾瑞蓮(2005),科學教育月刊 279期 P.35-38。
18.莊順興、柯貴城、歐陽嶠暉(2008),工業污染防治 第107期 P.147。
19.陳耀茂(2022),圖解層級分析法 第一章P.2-40,五南圖書出版股份有限公司。
20.順賀行企業股份有限公司(2012),DAF 加壓浮除套裝設備,取自https://www.neweiko.com.tw/products.php?id=1
21.夏維東(2006),An ozone method and ozone device,CNB200610041170XA。中國科學技術大學。
22.經濟部水利署(2024),102~111年臺灣水資源利用平均值,取自https://www.wra.gov.tw/cl.aspx?n=6230
23.褚志鵬(2009),層級分析法(AHP)理論與實作,國立東華大學企業管理系教學講義。
24.鄧振源、曾國雄(1989),層級分析法(AHP) 的內涵特性與應用,中國統計學報,27卷 6期,P.12。